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Abstract 

The paper deals with relationships between the individual transmembrane fluxes of binary 

electrolyte solution components and the experimentally measurable quantities describing rates of 

transfer processes, namely, the electric current, the transmembrane volume flow and the rates of 

concentration changes in the solutions adjacent to the membrane. Also, we collected and 

rigorously defined the kinetic coefficients describing the membrane selective and electrokinetic 

properties. A set of useful relationships between these coefficients is derived.  

An important specificity of the proposed analysis is that it does not use the Irreversible 

Thermodynamic approach by analyzing no thermodynamic forces that generate the fluxes under 

consideration. Instead, all the regularities are derived on the basis of conservation and linearity 

reasons. The terminology “Kinematics of Fluxes” is proposed for such an analysis on the basis of 

the analogy with Mechanics where Kinematics deals with regularities of motion by considering 

no mechanic forces. The only thermodynamic steps of the analysis relate to the discussion on the 

partial molar volumes of electrolyte and ions that are the equilibrium thermodynamic parameters 

of the adjacent solutions. These parameters are important for interrelating the transmembrane 

fluxes of the solution components and the transmembrane volume flow. The paper contains short 

literature reviews concerned with the partial molar volumes of electrolyte and ions: the methods 

of measurement, the obtained results and their theoretical interpretations. It is concluded from 

the reviews that the classical theories should be corrected to make them applicable for 

sufficiently concentrated solutions, 1M or higher. The proposed correction is taken into account 

in the kinematic analysis. 
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1. Introduction: Irreversible Thermodynamics and Kinematic of Fluxes 

 

1.1 Membrane as electro- mechano- chemical transducer 

Membranes are the layers of diverse nature that allow components of mixtures to be 

transported through such layers in other proportions than those defined by the properties of 

components in the mixture. This property motivated the use of such selective membranes in a 

variety of technologies dealing with separation of components of various mixtures without the 

changes of aggregate state. In particular, the components of electrolyte solutions are often 

separated by using electrically- and pressure- driven membrane processes [1-3]. 

In many technological processes, membrane separation of mixtures is conducted by 

consuming the external thermodynamic work which is partially stored in the system in the form 

of additional Free Energy of separation products with reference to the initial mixture. Moreover, 

a system of two solutions with different compositions always bears the additional Free Energy 

with reference to their mixture. Consequently, by properly mixing these solutions, the system 

can produce electrical or mechanical work. Such reversible (completely or partially) processes 

can be organized with help of membranes having special selective properties with respect of the 

solutions being mixed. 

The abovementioned thermodynamic opportunity to obtain electrical and mechanical 

work by mixing solutions is widely employed in analytical technique dealing with, respectively, 

the ion-selective membrane electrodes [4] and the membrane osmometers for studying 

macromolecular solutes [5]. Obviously, in the latter applications, the additional free energy is 

converted to the work in low amounts that are insufficient for using in the Energy Industry. 

However, in 1950th and 1970th, it was suggested to utilize the giant Free Energy accumulated in 

the sea water by reversible mixing it with the water from other natural sources having much 

lower salinity [6,7]. It was proposed to conduct such a membrane mixing with obtaining 

electrical [6] or mechanical [8] work. In 2000th, the interest to this project increased, and, during 

the past decades, it became in the focus of intensive studies [9-15]. 

The above statement demonstrates the ability of membranes to serve as an 

electrochemical and/or mechano-chemical transducer. While using membranes in contact with 

two electrolyte solutions, one often observes the Electrokinetic Phenomena (Electroosmosis, 

Streaming Potential and Current etc.) [16,17]. Hence, such a membrane is also an electro-

mechanical transducer. 

The behavior of membranes as electro-mechano-chemical transducer was discussed 

above for the synthetic membranes employed in different technologies. It should be noted that a 
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similar coupling between the electrical, mechanical and chemical processes exists in the case of 

biological membranes that play an important role in the living activity of biological cells [18]. 

Remarkably, the membranes discussed above are very different by their chemical origin, 

morphology and physical properties, but they show similar behavior in terms of 

Thermodynamics. Therefore, more than six decades ago, Thermodynamics was chosen to be the 

theoretical basis for studying Membrane Phenomena (MP). Since all the MP are observed under 

non-equilibrium conditions, the Linear Irreversible Thermodynamics (LIT) [19,20] was 

considered as a proper tool for addressing Membrane Phenomena. 

 

1.2 Linear Irreversible Thermodynamics for addressing membrane phenomena  

Within the frameworks of the LIT, the membrane transport of solution components is 

described with the help of n n×  matrix, L , whose elements are referred to as the kinetic 

coefficients. This matrix is represented in the linear relationship  

=T TY LX            (1) 

where the column vector, TY , is a transposition of the row vector { }1 2, ,... nY Y Y=Y which yields 

a set of Thermodynamic Fluxes, describing the rates of the solution component transfer through 

the membrane. The column vector, TX  is the transposed raw vector { }1 2, ,... nX X XX =  which 

yields a set of Thermodynamic Forces that are the differences between some intensive 

thermodynamic parameters, kΩ , attributed to the solutions adjacent to the membrane, 

k k k kX ′ ′′= ∆Ω = Ω − Ω , (Fig.1). Hereafter, the notations ( )′  and ( )′′  signify, respectively, the 

quantities attributed to the agreed left and right hand solutions adjacent to the membrane (Fig.1). 

The vector of Thermodynamic Forces, X , describes the external influences resulting in 

the system departure from the thermodynamic equilibrium state. Accordingly, at 0=X , the 

system remains in the thermodynamic equilibrium state when all the fluxes are absent, i.e., 

0=Y . Thus, the right hand side of Eq.(1) yields the linear terms in the Taylor series expansion 

of Thermodynamic Fluxes in terms of Thermodynamic Forces. Accordingly, while using the 

linear relationship given by Eq.(1), the departure from the thermodynamic equilibrium is 

assumed to be small, and the matrix of kinetic coefficients is considered to be independent of 

external driving forces. Therefore, L  is completely defined by the membrane properties. It 

should be added that in many cases, accounting for the linear terms only is insufficient for 

describing the system behavior.  
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Fig.1. Thermodynamic Fluxes and Forces 

 

By using the measured matrix of kinetic coefficients, L , one can address all the 

membrane phenomena without knowledge about the membrane morphology and specific micro-

mechanisms responsible for the membrane selectivity and permeance. At the same time, studies 

of such mechanisms can be conducted separately by analyzing the influence of membrane 

morphology and the external conditions on the matrix of kinetic coefficients, L . In the literature, 

there are hundreds of publications concerned with predictions of kinetic coefficients on the basis 

of a variety of assumed models of the membrane morphology. As a simple example, we will just 

mention only two of them where a membrane is considered to be a packed bed of charged solid 

spheres [21,22].  

A substantial progress in the Membrane Science was achieved due to the use of an 

approach developed by Onsager who suggested a method of choosing convenient sets of 

Thermodynamic Fluxes and Forces, Y  and X  [23, 24].  

In refs.[23,24], Onsager considered the entropy, s , changes in a thermodynamically open 

system involved in irreversible processes. These changes can be subdivided in two types: (i) 

those produced due to the heat and mass exchange with a thermostat, exds , and (ii) those 

generated inside the system, intds . Hereafter, to the rate of entropy changes of the second type, 

int /ds dτ  (where τ is the time), we will refer as the Entropy Production Function (EPF), 

int /W ds dτ= . For the LIT case, the function, W , is a positive definite bilinear form of 

Thermodynamic Fluxes and Forces.  

Importantly, in some special cases, such a bilinear form takes the diagonal form 

W = ⋅X Y            (2) 

According to the Onsager theorem [23,24], if, and only if, the EPF takes the form given by 

Eq.(2), the matrix L  has the diagonal symmetry, TL = L . 
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Thus, while conducting the LIT analysis, it is convenient to choose the sets of 

Thermodynamic Forces and Fluxes in the manner allowing representing the EPF in the diagonal 

form of Eq.(1). Such a choice enables one to reduce the number of independent kinetic 

coefficients substantially, by using the abovementioned symmetry rule, TL = L . Each of the 

independent coefficients nkL can be measured with the help of an experimental scheme defined 

by Eq.(1). While using the symmetry rule, obtaining a cross coefficient, nkL  ( n k≠ ), 

simultaneously gives the value of the respective symmetric coefficient, knL . 

Starting with the middle of previous century, the LIT approach based on the Onsager 

theorem [23,24] has been widely used for analyzing the MP for a membrane placed between two 

electrolyte solutions. In the studies of Mazur & Overbeek [25] and Lorenz [26], by using this 

theorem, the authors interrelated the kinetic coefficients describing different Electrokinetic 

Phenomena [27, 28]. It was demonstrated that the Electroosmotic and Streaming Potential 

Coefficients are equal regardless the membrane origin and morphology. Also, the authors 

interrelated the membrane electric conductances measured at zero transmembrane volume flow 

and pressure difference as well as the hydraulic permeances measured at zero transmembrane 

electric current and voltage. 

In aforementioned refs.[25,26], the LIT analysis was conducted for the case when a 

membrane is placed between two solutions having the same compositions as it is typical for 

Electrokinetics [16, 17]. A more general case was addressed in the pioneering paper of 

Staverman [27]. He used the LIT approach for analyzing the transport of components of a mixed 

electrolyte solution driven through the membrane by the electric potential, pressure and ion 

concentration differences. While considering the limiting case of equal compositions of the 

adjacent electrolyte solutions, he rederived the results obtained for the Electrokinetic Phenomena 

in refs.[25, 26].  

The starting point of Staverman theory was the expression for the EPF having the 

diagonal bilinear form given by Eq.(2) where the vectors of the Thermodynamic Forces and 

Fluxes were given as  

{ }
{ }

k

kJ

µ∆X =

Y =
           (3) 

where kJ  and kµ∆  are, respectively, the kth solution component transmembrane flux and 

chemical potential difference across the membrane. By using such a form for the EPF, 

Staverman [27] derived very general and elegant thermodynamic expressions for addressing 

different MP.  
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Later, by transforming the EPF given by Eqs.(2) and (3), Kedem & Katchalsky and 

Michaeli & Kedem in their famous publications [28-31] derived several equivalent versions of 

LIT equation sets describing the MP for membrane between two binary mixtures of the same 

non-electrolyte substances [28 29] and between two solutions of the same binary electrolyte 

[30,31]. Hereafter, we will refer to these studies and results as the KKM theory.  

Detailed discussion of the KKM results is given in Section 3. Now, we only mention that 

the Thermodynamic Fluxes were obtained in [30, 31] to be linear combinations of three solution 

component fluxes, kJ : two ions and solvent. The obtained combinations are interpreted by the 

authors as the transmembrane solution volume flow, the electrolyte (salt) flux and electric 

current. As demonstrated later [32-34], strictly speaking, the first and second combinations have 

the abovementioned physical meanings at zero current, only. However, when electric current is 

not zero, the interpretation suggested in [30, 31] can serve as a certain approximation which 

allows the KKM fluxes and forces to be linked to a strictly defined thought experiments. 

Within its validity range the KKM theory gives scheme of imposing and/or measuring the 

Forces and Fluxes. The latter enabled the authors of [29-31] to introduce a set of six coefficients, 

namely, the reflection coefficient; the hydraulic and osmotic permeances; the electric 

conductance, the electric transport number for any of two ions; the Electroosmotic Coefficient. 

The introduced coefficients have clear physical meaning and are referred to as the practical 

coefficients in the relevant literature. Due to the symmetry of the obtained 3 3× matrix, L, the six 

practical coefficients are sufficient to express all the nine matrix elements. 

The wide field of applicability and the fact that the KKM equations contain only the 

directly measurable and strictly defined quantities explain the great impact produced by the 

KKM theory on the development of Membrane Science. The KKM equations triggered a 

powerful flow of publications concerned with different aspects of Membrane Science and 

defined its development for decades. References [35-46] comprise papers on membranes having 

different nature and represent a small portion of the tremendous massive of studies using the 

KKM theory that have been reported during the past two decades, only. 

 

1.3 Kinematics of Fluxes and Membrane Phenomena 

In different cases, for addressing electro-mechano-chemical transduction discussed in 

Section 1.1, there is no need to use the scheme based on the Onsager theorem and outlined in the 

previous Section. Some of the Membrane Phenomena manifest themselves as coupling between 

transmembrane fluxes of different physical nature. In this paper, we use the terminology 

“Kinematics of Fluxes” for signifying an analysis of membrane phenomena in terms of 

transmembrane fluxes only, i.e., by considering no thermodynamic forces that generate these 
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fluxes. Such a terminology is based on the analogy with Mechanics where Kinematics deals with 

regularities of motion by considering no mechanic forces defining the regularities. 

 As stated in Section 1.1, the ability of membranes to transform free energy from one form 

to another exists due to the membrane property to provide transfer of the adjacent solution 

components in other proportions than those defined by the properties of the solutions. These 

proportions can be characterized by a set of coefficients that show the contributions of each of 

the solution component flux into a measurable transmembrane flux. Accordingly, these 

coefficients bear information about selective properties of membranes with respect of the 

transported solution components.  

Two of three measurable Thermodynamic Fluxes of the KKM theory [30,31], namely, the 

electric current and the volume flow can be imposed and controlled by means of external electric 

and hydraulic sources. Below, we present a list of membrane phenomena to be analyzed within 

the frameworks of Kinematic of Fluxes. These phenomena are observed while imposing electric 

current or volume flow: 

(a) Streaming Current is the transmembrane electric current driven by the volume flow 

passed through the membrane; 

(b) Electroosmosis is the transmembrane volume flow which is driven by the electric current 

passed through the membrane; 

(c) Reverse Osmosis is the composition changes produced in the solutions adjacent to a 

membrane when the transmembrane solution volume flow is imposed at zero 

transmembrane electric current; 

(d) Electrodialysis Effect is a change of composition which is produced by the 

transmembrane electric current in the solutions adjacent to membrane. 

For addressing the effects listed above, one can introduce a set of coefficients characterizing 

a given membrane. The coefficients should be introduced with the help of certain thought 

experiments with the membrane. As well, it is possible to introduce a set of relationships 

between these coefficients while taking into account that, in the linear case, one deals with a 

superposition of the effects listed above.  

The scheme presented in Fig.2 illustrates the complex couplings that can be observed 

between the transmembrane electric current and volume flow and lead to combining the above 

listed effects. For example, passing the electric current through a membrane under certain 

conditions gives rise to both the volume flow and concentration changes due to the 

Electroosmosis and Electrodialysis, respectively. Simultaneously, the produced volume flow 

additionally contributes to the concentration changes due to Reverse Osmosis. Thus, one can 
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expect that the membrane parameters responsible for Electroosmosis, Electrodialysis and 

Reverse Osmosis can be interrelated with each other. 

 

 
 

Fig. 2 Electro-mechano-chemical effects due to the complex coupling between 

transmembrane electric current and volume flow 

 

Thus, it is important to establish relationships between the abovementioned coefficients 

that, on the one hand, describe the membrane selective properties and, on the other hand, reflect 

the membrane ability to conduct mechano-electro-chemical transformations of free energy. One 

might add that, once obtaining such relationships with the help of the Flux Kinematic analysis, 

one can use them in the LIT analysis based on the Onsager cross relationships. 

The Flux Kinematic analysis requires knowing strict relationships between the individual 

component transmembrane fluxes and the measured and imposed fluxes. For effects (a)-(d) listed 

above, the latter fluxes are the transmembrane electric current and volume flow. As stated in 

Section 1.2 by referencing to [32-34], for non-zero transmembrane electric current, the KKM 

theory gives only an approximate expression for the transmembrane volume flow in terms of the 

solution component fluxes. Therefore, it is required to derive a more general expression than that 

given by the KKM theory and analyze how important is the correction to be obtained. It should 

also be noted that the transmembrane volume flow gives the rate of the volume changes of the 

solutions adjacent to the membrane. These rates are equal by magnitude and opposite by sign 

due to the assumed incompressibility of the solutions [47]. At sufficiently high electrolyte 

concentrations, it is expected that adding/removing electrolyte into/from a solution affects the 

volume of solution, noticeably.  

While considering the transmembrane volume flow, for analyzing the adjacent solution 

volume changes, it is correct to use the Reversible Thermodynamics (Thermostatics) of the 
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electrolyte dissolving. The latter is true since the LIT analysis of purely membrane transport is 

always conducted by assuming the adjacent solutions to be in the equilibrium states that are close 

to each other. Accordingly, one can use for such an analysis all the nontrivial results that have 

been reported in the literature during over the century [48-78]. The results obtained in these 

studies reveal the importance of the effects originating from the reorganization of solvent by the 

dissolved electrolyte, in particular, by electrostriction produced by the individual ions. The latter 

effect was predicted in the pioneering paper of Nernst & Drude [48]. 

Thus, it is important to obtain a correct expression for transmembrane volume flow with 

accounting of the results of studies in Thermostatics of electrolyte solutions [48-78] and evaluate 

the applicability limits of the KKM theory [30, 31] on this basis. 

In the case of non-zero electric current, a difficulty in the abovementioned Thermostatic 

analysis of adjacent solutions is associated with unavoidable contributions of the source and 

sinks of electric current into the changes of the solution ionic compositions. These changes occur 

additionally to those resulting from the membrane transport of ions and are defined by the 

proportion according to which the ions transfer the current through the abovementioned source 

and sink. 

In order to avoid the problem outlined above, the authors of the KKM theory considered 

the membrane with the adjacent solutions inside an electrochemical cell made up by a couple 

identical electrodes being the said source and sink. The electrodes are assumed to be reversible 

for one and indifferent for other of the binary electrolyte ions. Essentially, the KKM theory gives 

the LIT description of such a cell with a membrane, not the membrane itself. The 

abovementioned discrepancy between the KKM and the transmembrane volume flows is one of 

examples of that. In Section 3, we will give a detailed critical analysis of fluxes considered in 

[30, 31] as the transmembrane ones. 

The electrochemical electrode couple introduced in the KKM theory can be understood as 

an element of a real experimental set up. At the same time, the electrochemical cell made up by 

such electrodes can be interpreted as a purely hypothetical construct. Accordingly, introducing 

such a cell in the KKM theory can be considered as a convenient theoretical step for analyzing 

regimes with non-zero current. Therefore, we will call such a hypothetical cell, as the Virtual 

Electrochemical Cell (VEC). For addressing the purely membrane transport with the help of 

VEC, the relevant theoretical analysis should include the following steps: 

- to assume certain properties of the VEC electrodes; 

- to interrelate the transmembrane fluxes and the rates of composition changes of the 

adjacent solutions;  
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- to extract the regularities that are inherent in the purely membrane transport from the 

information contained by the solution composition changes; 

- to ensure that the obtained regularities of membrane transport are independent of the 

assumed properties of VEC. 

The reasons stated in the presented section motivated us to use the purely kinematic 

approach for conducting a systematical analysis of several important aspects of membrane 

transport. Next, we will state these aspects more specifically. 

 

1.4 Objectives and structure of the paper 

The present study is intended to achieve following objectives.  

1) To interrelate the individual transmembrane fluxes of the solution components with the 

measurable or imposed rates that are referred to as the transmembrane electric current, 

solution volume flow and electrolyte flux. For the electric current, such an interrelation is 

trivial, but, for the other two rates, the results presented in literature require to be 

extended for highly concentrated solution. 

2) To collect the membrane parameters that are responsible for the selectivity of transport of 

the individual solution components in the regimes of the imposed transmembrane electric 

current and volume flow. 

3) To address the coupling between the transmembrane electric current, solution volume 

follow and electrolyte flux, in terms of the coefficients responsible for the membrane 

selectivity with respect to different solution components. Such an analysis will give the 

description of electro-mechano- chemical membrane phenomena listed in Section 1.3, as 

(a)-(d). 

4) By using the purely kinematic analysis, i.e., without the use of the Onsager theorem, to 

establish relationships between different parameters responsible for the membrane 

selectivity as well as between these parameters and the coefficients describing the 

electro-mechano-chemical coupling of fluxes.  

The objectives formulated above define the communication structure.  

In Section 2, we introduce the VEC, which was mentioned in the end of Section 1.3, and 

make some basic definition related to the rates of ion and electrolyte concentration changes in 

the VEC and individual ionic fluxes.  

In Section 3, the rate of volume changes in the compartments of the VEC is discussed. The 

discussion employs an equilibrium thermodynamic parameter which is attributed to the adjacent 

solutions and is referred to as the partial molar volume of electrolyte. In our opinion, the latter 

quantity deserves more attention than it is usually paid in the membrane literature. Therefore, 
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Section 3 contains a short survey of the literature concerned with the theoretical basis for 

measuring the electrolyte partial molar volume, the respective experimental data and 

explanations of their behavior. As well, Section 3 contains a detailed discussion of the KKM 

theory. The discussion leads to conclusions regarding both the advantages and the restrictions of 

the KKM theory. 

One of the conclusions formulated in Section 3 is that the KKM theory requires an extension 

to be capable of addressing sufficiently concentrated electrolyte solutions. In Section 4, it is 

pointed out that, to this end, one should unavoidably use such parameters as the partial molar 

volumes of individual ions. Accordingly, in Section 4, a survey of the literature is presented 

about the nontrivial approaches to the experimental determining these parameters and a summary 

of results reported in the literature for different ions. The survey also includes theoretical models 

intended to describe different unexpected experimental results. Transmembrane volume flow, 

which is written in Section 4 in terms of the partial molar volumes of individual ions, is 

evaluated by using the literature results on the volumes.  

In the Section 5, we introduce sets of coefficients that describe selective properties of 

membrane with reference to the solution components and describe in these terms mechano-

chemical, electrochemical and electro-mechanical coupling between the fluxes. As well, a set of 

important relationships is derived to interrelate the coefficients describing the membrane 

selectivity under various imposed conditions. 

 

2. Fluxes of ions and electrolyte 

We consider a thought experiment employing two compartment cell sketched in Fig.3. 

The compartments are separated from each other by the membrane under consideration and filled 

by binary solutions of the same strong binary electrolyte, 
A B

A Bν ν , dissociating according to the 

stoichiometric equation  

A B A BA B A Bν ν ν ν→ +           (4) 

where the integer numbers 0Aν >  and 0Bν >  are the stoichiometric coefficients. The 

electroneutrality of initial electrolyte implies the validity of the relationship 

0A A B Bz zν ν+ =           (5) 

where Az  and Bz  are the charge numbers of ions. For imposing the electric current and the 

volume flow through the membrane, the compartments are supplied by electrode and capillary 

couples, respectively. 
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Fig.3 Two compartment cell containing membrane 

 

In order to analyze kinetics of the pure membrane transport of the solution components, 

the rate of transport is assumed to be sufficiently slow to allow both the thermodynamic 

equilibrium and the local electroneutrality to be maintained within the compartments. 

Consequently, the solution components are assumed to be uniformly distributed within each of 

the solutions filling the compartments. 

By using the stoichiometric and electroneutrality equations, Eqs.(4) and (5), respectively, 

and assuming the total electroneutrality of each of the solutions, one can interrelate the total 

amounts, , ( )A Bn mol , of ions, A or B, in any of the compartments and their spatially uniform 

molar concentrations, ( )3
, /A Bc mol m  

,
,

                 (a)

          (b)

                   (c)

A B

A B

A B

A B

A B
A B

n n n

c c nc
V

n
c

V

ν ν

ν ν

= =

= = =

=

         (6) 

where V and n are the volume of any of the compartments shown in Fig.3 and the electrolyte 

amount inside this volume, respectively. 

 

2.1 Virtual Electrochemical Cell (VEC) 

Our attention is focused on the solution component transport through the membrane. This 

transport gives rise to changes of the solution volume and component amounts in the adjacent 

solutions (Fig.3). In the presence of electric current, unavoidably, all these quantities are also 

changed due to the reactions at the electrodes of the VEC, which was already mentioned in 

 13 



Section 1.3, and now is used in the thought experiment sketched in Fig.3. We will refer to the 

total rates of these combined changes as the respective apparent fluxes. As stated in Section 1.3, 

within the frameworks of a theoretical scheme intended for obtaining transmembrane fluxes, 

introducing the VEC with given electrode properties can be considered as a purely theoretical 

step. 

Consider the transmembrane fluxes of ions A and B, m
AJ  and m

BJ . These fluxes define the 

electric current, I, transferred through the membrane according to equation 

( )m m
A A B BI F J z J z= +           (7) 

F is the Faraday constant.  

Since the electroneutrality of solutions is maintained, the magnitude of electric current 

remains the same in all crosssections of the cell sketched in Fig.3. However, through different 

crosssections, the current may be transferred by ions in different proportion than that given by 

Eq.(7).  

The VEC electrodes are assumed to impose given portions of current being transferred 

through them by each of the ions, e
At  and e

Bt . It is also assumed that the solvent does not take part 

in the electrode reactions and, thus, 1e e
A Bt t+ = . In particular, at the electrodes, individual ion 

fluxes are defined by the abovementioned electrode transport numbers e
At  and e

Bt  (Fig.3).  

,
,

,

e
A Be

A B
A B

It
J

Fz
=            (8) 

For simplicity, we consider the VEC electrodes having redox properties with respect to only one 

type of ion - either A or B. According to such an assumption, each of the fluxes at the electrode 

should always become zero at 0I = . Such a situation can take place for two types of the VEC’s, 

only 

0;  1e e
A Bt t= =     VEC (A) 

or            (9) 

1;  0e e
A Bt t= =     VEC (B) 

Note that the cell notation proposed above is linked to the notation of the blocked ion, i.e., to the 

ion for which the electrode transport number is zero. Importantly, the VEC’s defined by Eq.(9) 

have been employed in the KKM theory [28,31] in the same role. In the analysis below, we will 

use the general notation, e
At  and e

Bt , with understanding that only two abovementioned couples 

could be substituted for e
At  and e

Bt . 
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2.2. Transmembrane and apparent fluxes 

Let us now combine Eq.(8) with the conservation laws written for each of the 

components of solutions inside the cell shown in Fig.3. Accordingly, the transmembrane fluxes 

of A and B ions, m
AJ , m

BJ  ( ,
m
A BJ ), and solvent, m

wJ , can be interrelated with the rates of changes of 

the ion and solvent amounts within the respective compartments of VEC, as 

, , , ,
,

, ,

              (a)

                                          (b)

e e
A B A B A B A Bm

A B
A B A B

m w w
w

It dn It dn
J

Fz d Fz d
dn dnJ
d d

τ τ

τ τ

′′ ′
= + = −

′′ ′
= = −

      (10) 

where τ  is the time and ( )wn mol  is the solvent amount in the respective compartment. The 

notations ( )′  and ( )′′  signify the quantities attributed to the left and right hand side compartments 

shown in Fig.3, respectively. 

 By combining Eqs (6a) and (10a), one obtains: 

dn dn J
d dτ τ

∗′′ ′
= − =           (11) 

where we introduced the apparent electrolyte flux, J ∗ , which gives the rate of changing the 

electrolyte amounts, n′  and n′′ , in the VEC compartments (Fig. 3).  

When the current, I, the electrode transport numbers, ,
e
A Bt , and the apparent electrolyte 

flux, J ∗ , are known, the actual transmembrane ion fluxes, m
AJ  and m

BJ , are reconstructed with 

the help of Eqs.(10a) and (11).  

Using Eqs.(6a), (10a) and (11) leads to the following expressions for J ∗  

1
2 2

m m e e m m
e eA B A B A B
B A

A B A A A B

J J I t t J JJ t t
F zν ν ν ν ν

∗   −
= + − = + 

 
      (12) 

Inspecting two versions of the VEC given by Eq.(9) and using Eq.(12) give 

/m
A AJ J ν∗ =     VEC (A) 

or            (13) 

/m
B BJ J ν∗ =     VEC (B) 

As it is clear from the first equality in Eq.(12), at zero current, 0I = , the apparent 

electrolyte flux takes the form 

( )
0

m m
mA B

I
A B

J JJ J
ν ν

∗

=
= = =          (14) 
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where we introduced the actual transmembrane electrolyte flux, mJ , which has a physical 

meaning in the only case of zero current, 0I = , i.e., when the ions are transferred through 

membrane in stoichiometric amounts set by Eq.(4) 

 By using Eqs.(10)-(12), one can also obtain expressions for apparent fluxes of ions, AJ ∗  

and BJ ∗   

, , ,
, , ,

,

e
A B A B A Bm

A B A B A B
A B

dn dn It
J J J

d d Fz
ν

τ τ
∗ ∗′ ′′

= − = = − =       (15) 

 

3. Apparent volume flow 

Simultaneously with the solute, the solvent is transferred through the membrane. 

However, for practical needs, it is often more convenient to deal with the transmembrane 

solution volume flow, v
mJ , rather than the sole solvent flux, m

wJ .  

Recall that each of the adjacent solutions is assumed to be infinitely close to its 

equilibrium state. Hence, with the help of equilibrium equation of state, the solution volume can 

be expressed as a function of absolute temperature, T, pressure, p, and amounts of solvent and 

electrolyte, wn  and n, respectively. 

( ), , , wV V T p n n=           (16) 

Consequently, a small change of the volume of any of the solutions can be represented as  

, , , ,, , , ,w ww

w
p n n T p n wT n n T p n

V V V VdV dT dp dn dn
T p n n

  ∂ ∂ ∂ ∂   = + + +      ∂ ∂ ∂ ∂      
   (17) 

We confine ourselves by analyzing the isothermal regimes that allows us to omit the first 

term on the right hand side of Eq.(17). As well, the compressibility of electrolyte solutions is 

close to that of water and takes value of order of 10 110 Pa− −  [47]. It means that even a high 

pressure difference about 100 bar can change the volume of a given solution by 0.1%, not more. 

Consequently, for lower pressure differences, one can omit the second term on the right hand 

side of Eq.(17). Next, while taking into account Eqs.(10b) and (11), one can obtain from Eq.(17) 

the following equality 

v
dV dV J
d dτ τ

∗′′ ′
= − =           (18) 

where we introduced the apparent volume flow, vJ ∗ , describing the equal changes of solution 

volumes in the VEC compartments shown in Fig.3.  

By inspecting the sketch in Fig.3, we present the following balance equation 

v v v
m eJ J J∗= +            (19) 
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where v
mJ  is the transmembrane volume flow and v

eJ  is the volume flow associated with the 

electrode reactions.  

Below in this Section, we consider how the apparent volume flow, vJ ∗ , is interrelated 

with the solvent and electrolyte fluxes. 

 

3.1 Partial and apparent molar volume of electrolyte 

Let us write Eq.(17) with omitted two first terms on the right hand side for each of two 

compartments shown in Fig.3. By combining the obtained equations written in terms of time 

derivatives with Eqs.(10b) and (17), we express the apparent volume flow, vJ ∗ , in the form  

v v v m
w wJ J J∗ ∗= +           (20) 

In Eq.(20), we introduced the partial molar volumes of electrolyte and solvent, ( )3v /m mol  

( )3v /w m mol , defined, respectively, as 

, ,

, ,

v              (a)

v             (b)

wT p n

w
w T p n

V
n

V
n

∂ =  ∂ 

 ∂
=  ∂ 

         (21) 

At constant temperature and pressure, ( ), wV V n n= . It can be shown that ( ), wV n n  is the 

first order Euler homogeneous function, ( ) ( ), ,w wV kn kn kV n n= . Such a property implies that  

( )
, , , ,

,
w

w w
T p n w T p n

V VV n n n n
n n

 ∂ ∂ = +   ∂ ∂   
       (22) 

By combining Eqs.(6b), (21) and (22), one obtains a useful relationship  

v v 1w wc c+ =            (23) 

where ( )3/ /w wc n V mol m=  is the solvent concentration. While using Eqs.(20) and (23), we 

express the transmembrane solvent flux through the apparent volume and electrolyte fluxes, as 

v v
1 v

m
w w

J JJ c
c

∗ ∗−
=

−
          (24) 

As it follows from Eq.(24), the electrolyte partial molar volume, v, is an important quantity 

enabling one to interrelate the directly measurable apparent fluxes, vJ ∗  and J ∗ , and the 

transmembrane solvent flux, m
wJ . Clearly, the role of this quantity becomes more important with 

increasing the electrolyte concentration, c.  
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As we mentioned in Section 1.3, the partial molar volumes of different electrolytes have 

been intensively studied during a long period of time [48]-[78]. One of the nontrivial effects 

discovered in these studies was that the electrolyte partial molar volume was found to be a 

function of electrolyte concentration, ( )v v c= . This function is obtained from the concentration 

dependency of the apparent molar (molal, in many publications) volume, ( )v v c∗ ∗= , which is 

the solution volume, V, change compared to the pure solvent volume, wV , calculated per 1 mole 

of the solute amount. The function ( )v c∗  is determined from the measured mass density of 

electrolyte solution, ( )3d /kg m , and pure solvent, ( )3d /w kg m , by using one of the expressions 

represented in the following chain of identities 

( ) ( ) ( ) ( )
, ,

d d d m d
v v m

d d d mdd
w

w ww

p T n w w w

cV Vc
n c

∗ ∗− −− Μ Μ = = − = − = 
 

   (25) 

where ( )/kg molΜ  is the solute molar mass; ( )m /mol kg  is the solution molality. Detailed 

derivation of Eq.(25) is given in Appendix A1. 

 While realizing that ( )m / d 1 vwc c ∗= −  and using the Eqs.(23) and (25), one can 

interrelate the specific and apparent molar volumes, as  

2, , , , , ,

, ,

v v 1 v vv v v m v
m v1w w w

w

p T n p T n p T n

p T n

cn c
n c

c
c

∗ ∗ ∗ ∗
∗ ∗ ∗

∗

     ∂ ∂ − ∂
= + = + = +     ∂ ∂ ∂ ∂     +  ∂ 

  (26) 

The detailed derivation of Eq.(26) is also reproduced in the Appendix A1.  

As it follows from Eq.(26), the partial and apparent molar volumes, v∗  and v , coincide 

when the measured value of v∗  is independent of the solute molar concentration c. Otherwise, 

they coincide in the limiting case of infinite dilution, 0c → , only.  

For the first time, the systematic experimental studies of apparent molar volume, v∗ , 

based on the density measurements followed by the use of Eq.(26) have been reported by Mason 

[49]. For solutions of different electrolytes, by fitting the measured concentration dependencies, 

( )v c∗ , Mason established the limiting law for high dilutions  

( )

( )

v v 0         (a)
3v v 0        (b)
2

c

c

∗ = + Κ

= + Κ
         (27) 

where ( )9/2 3/2/m molΚ  is an adjustable parameter.  Consequently, the common value of the 

apparent and partial molar volumes at infinite dilutions, ( ) ( )v 0 v 0∗ = , is obtained by 
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extrapolating the measured dependency ( )v c∗  to 0c → . Note that Eq.(27b) can be obtained 

by substituting (Eq.27a) into the final expression of Eq.(26) and retaining the the zero order term  

and the term proportional to c , only.  

Some later, Redlich & Rosenfeld [50, 51] deduced an expression for the parameter Κ  in 

Eq.(27) by combining the Nernst & Drude concept [48] with the Debye-Hückel theory of 

electrolyte solutions [79]. In Section 5, we will present the Redlich & Rosenfeld analytical 

expression supplemented by a discussion on it. 

 Owen &Brinkley [52, 54] criticized both the Mason limiting law given by Eq.(27) and 

the prediction of Κ  made by Redlich & Rosenfeld [50, 51]. Instead, Owen & Brinkley suggested 

a more complex extrapolation formula which contained an additional parameter interpreted by 

the authors as the closest approach distance between the ions. Later, Redlich & Meyer [58] 

advocated Eq.(27) and their expression for Κ  by demonstrating that the asymptotic behavior of 

the Owen & Brinkley function at 0c →  coincides with Eq.(27) with Κ  predicted in refs. [50, 

51]. In ref. [58], Redlich & Meyer also proposed a correction of extrapolation function given by 

Eq.(27) by adding the third term on the right hand side of Eq.(27). The added term is assumed to 

be proportional to the electrolyte concentration, c, with a coefficient used as an adjustable 

parameter. 

The density measurements data are processed with the help of Eq.(27), and the obtained 

dependencies, ( )v c∗ , are fitted by using the Mason- Redlich & Meyer function or/and the Owen 

& Brinkley one. Such a scheme has been conducted by different authors [49-78] for obtaining 

the adjustable parameters, in particular, the partial molar volumes of electrolytes at infinite 

dilutions, ( ) ( )v 0 v 0∗ = . The values of the latter quantity are well documented for different 

electrolytes. For a given electrolyte, within the range of 1 /c mol l< , the value of ( )v c  reported 

in refs.[17-48] changes by about 10% compared to ( )v 0 . Below, we briefly summarize the 

major data and regularities we found in the literature concerning ( )v 0 for different electrolytes.  

For inorganic electrolytes, the reported partial molar volumes, ( )v 0 , were found to be 

negative and positive, and vary within the range ( )312 to 62  /cm mol− [49, 54, 56, 60-65, 72-74, 

76]. A trend is observed: for a given series of electrolytes having the same sets of ion charges, 

the partial molar volume increases with increasing the molar mass. However, in some cases, this 

trend is violated. Next, we survey some experimental data reported on different electrolyte types 
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The 1:1 electrolytes. With several exceptions ( NaOH , KOH , LiOH , KF , AgF), the 

partial molar volumes have positive value that noticeably exceed the sum of crystallographic 

volumes of the respective ions. Except for the series including an acid and respective Lithium 

and Sodium salts, the value of ( )v 0  increases with increasing the electrolyte molar mass. The 

partial molar volumes lie between 36.8 /cm mol−  ( NaOH ) and 357.7 /cm mol  (CsI ) [54, 56, 

60, 62-64] 

The 2:1 electrolytes. According to the available data (we did not find the information 

about the respective bases having low solubility), the partial molar volumes have positive values 

that increase with increasing the molar mass from 315.3 /cm mol  ( 2MgCl ) to 342.5 /cm mol  (

( )3 2
Pb NO ). Interestingly, very often, 2:1 electrolytes have noticeably smaller ( )v 0  than 1:1 

electrolytes having lower molar mass. For example ( )3 2
Pb NO  has an appreciably larger molar 

mass than CsI  and a lower partial molar volume. [54, 56, 63-65] 

The 1:2 electrolytes. All the partial molar volumes found in the literature are positive. In 

the series consisting of Sulfuric Acid and sulfates of Alkali Metals, 2 4H SO  ( 314.0 /cm mol ); 

2 4Li SO  ( 312.2 /cm mol ); 2 4Na SO  ( 311.5 /cm mol ); 2 4K SO  ( 331.9 /cm mol ) and 2 4Cs SO  (
356.7 /cm mol ), with increase of the molar mass, the values of ( )v 0  either increase or remain 

nearly constant. [54, 56, 64] 

The 2:2 electrolytes. In all the found examples, 4MgSO ; 4ZnSO , 4FeSO , 4CoSO , 4NiSO

, the partial molar volume turns out to be always negative. The volume absolute values are either 

smaller or slightly exceeding 310 /cm mol . [56, 64] 

 The 3:1 electrolytes. The partial molar volumes are positive and vary within a wide range 

which, for the found data, lies between 7.7 3 /cm mol  ( 3LuCl ) and 93.4 3 /cm mol  ( ( )4 3
La ClO

). As it could be expected, ( )v 0  is mostly defined by the molecular mass of anion taking close 

values for salts having a common anion and different cations that belong to different parts of the 

periodic table. For example, 3AlCl  ( 312.9 /cm mol ) and 3EuCl  ( 312.1 /cm mol ); ( )3 3
Al NO (

343.0 /cm mol ) and ( )3 3
Eu NO  ( 346.6 /cm mol ) etc. [56, 61] 

 The above listed partial molar volumes of inorganic electrolytes demonstrate that the 

terms of order of ( )vO c  might give noticeable contributions into the measured quantities for 

sufficiently concentrated solutions, For example, even 2MgCl  close to its solubility limit (about 

6 /mol l ) provides cv ≅ 0.09. Another example ( )3 3
Al NO  for which the estimations show  cv ≅ 
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0.15  close of the solubility limit (about 3 /mol l ). One can expect even higher values, v 0.2c ≥ , 

for the salts of Rear Earth Metals.  

Definitely, the terms of order of ( )vO c  are noticeable for some electrolytes containing 

organic ion since the partial molar volumes were found in the literature to be within the range 

( )3100 to 300 /cm mol [66-70, 75, 77, 78]. Accordingly, the achievable volume fraction, vc , 

sometimes can reach value of about 0.3. As well, such high volume fractions can be observed 

when a charge stabilized colloid is considered as electrolyte [80]. 

The role of such terms will be discussed in the end of Section 4 

 

3.2 Discussion on thermodynamic fluxes in Kedem- Katchalsky-Michaeli theory 

In the present section, we will focus on KKM theory [30,31] which was briefly discussed 

in Section 1. While considering membrane transport of binary electrolyte solution components, 

the authors of KKM theory transformed the EPF, W, by choosing such vectors of the 

Thermodynamic Forces and Fluxes, X and Y, that contain three components each and satisfy 

Eq.(2):  

{ }
{ }v

,  ,        (a)

/ ,  ,                    (b)s

p

J c J I

∆Π ∆ − ∆Π ∆Ε

=

X =

Y
        (28) 

where I  is the transmembrane electric current given by Eq.(7); sJ  and vJ  are referred to as the 

transmembrane electrolyte flux and volume flow in [30,31]. 

 

    
   (a)     
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(b)     

 

Fig. 4 Illustrations to the discussion on physical meaning of some Thermodynamic 

Fluxes and Forces in the KKM theory: (a) Virtual Osmotic Pressure difference, ∆Π; (b) the 

voltage, ∆Ε; the ion and solvent fluxes, ,
,

m e
A BJ  and m

wJ  . 

 

Later in this Section, we will show that such an interpretation is associated with an 

approximation. In Section 5, we will estimate the range of parameters where such an 

approximation yields a good description. 

Although the present communication deals with thermodynamic fluxes, next, we shortly 

comment the KKM set of thermodynamic forces given by Eq.(28a). 

The quantity p∆  (Pa) in Eq.(28a) signifies the pressure difference across the membrane; 

( )3/c mol m  is the solute concentration per unity of the solution volume in the solutions adjacent 

to the membrane. Note that the concentrations in the adjacent solutions may differ from each 

other. In refs.[30,31], the authors propose to use a mean solute concentration as the concentration 

c . In our opinion, using any concentration, which lies between those attributed to the adjacent 

solutions, does not lead to a higher error than the error originating from the use of linear 

approximation which is inherent in the LIT approach.  

Two other quantities on the right hand side of Eqs.(28a), ∆Π  and E∆ , have non-trivial 

physical meanings In Eq.(28a), ∆Π  is the transmembrane difference between the intensive 

thermodynamic parameter, Π , to which we will refer as the Virtual Osmotic Pressure (VOP) to 

distinguish it from the actual osmotic pressure. It should be stressed that Π  is not the pressure 

although it has the pressure dimension. However, for a given solution, the VOP can be 

determined by measuring the pressure difference in a special experiment where the solution is 
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equilibrated with a pure solvent across a perfectly semipermeable membrane. The pressure 

difference across such an ideal membrane will yield the intensive parameter Π  attributed to a 

given solution.  

The above meaning of VOP is illustrated in Fig.4a showing a U-pipe whose elbows 

contain the pure solvent and are separated by a plug. While bringing the elbows across two 

perfectly semipermeable membranes in contact with the solutions separated by the membrane 

under consideration, nothing changes in the cell shown in Fig.4a. Simultaneously, the pressure 

differences across the perfectly semipermeable membranes are established to be ′Π  and ′′Π . 

Accordingly, the pressure difference across the plug in the U-pipe, plugp∆ , becomes equal to one 

of the thermodynamic forces in Eq.(28a), plugp p∆ = ∆ − ∆Π . 

Thus, when the plug is supplied with means of sensing the pressure differences, such a U-

pipe could serve as a sensor for direct measuring the thermodynamic force p∆ − ∆Π  represented 

in the KKM equation set given by Eq.(28a). In particular, while maintaining zero value of the 

applied pressure difference, 0p∆ = , such a device gives the first thermodynamic force in 

Eq.(28a), ∆Π . 

Another hypothetical set up suggested in [30,31] for interpreting the Thermodynamic 

Force, E∆ , is sketched by the red dashed lines in Fig. 4b. Remarkably, it coincides with the 

VEC (B) shown in Fig 3 where the electrode transport numbers are given by the respective 

condition from Eq.(9). The quantity E∆  is named in [30,31] as the Electromotive Force and is 

interpreted there as the voltage which would exist between two external terminals of the VEC 

electrodes shown in (Fig.4b). It should be noted that the name Electromotive Force seems to be 

somewhat misleading terminology since, usually, it signifies the Open Circuit Voltage whereas, 

in Eq.(28a), one deals with a voltage in the presence of electric current through the cell.  

Importantly, Eq.(9) implies two options of choosing VEC. The latter means that, strictly 

speaking, the KKM theory suggests to use not a unique vector of Thermodynamic Fluxes, but 

any of two vectors associated with blocking ions A or B, ( )AY  or ( )BY  ( ( )A,BY ). Consequently, 

one can rewrite Eq.(28b), as 
( ) ( ) ( ){ }A,B A,B A,B

v, ,sJ J IY =          (29) 

where the electric current, I, given by Eq. (7) is a common component of both the versions of 

vector, ( )A,BY , whereas, in the general case, the first and second components differ: ( ) ( )A B
s sJ J≠  

and ( ) ( )A B
v vJ J≠ . While taking into account such a dualism inherent in the KKM theory, one can 

rewrite the expressions suggested in refs.[30,31] for the first and second components of the flux 

vector as 
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( )

( ) ( )

A,B
, ,

A,B A,B
v

/   
 

v v  

m
s A B A B

s w w

J J

J J J

ν =


= +
         (30) 

Note that Eq.(30) comprises two equation sets. The first equation set is written with the 

superscripts (A) and the subscript A, to address the VEC blocking the ion A. The second equation 

set is attributed to the VEC blocking ion B, and thus one should use the superscript (B) and the 

subscript B.  

 A comparison of Eq.(30) with Eqs.(13) and (20) leads to the expected result  
( ) ( ) ,

,

A,B
1
0

e
B A
e
A B

ts
t

J J ∗
=
=

=           (31) 

( ) ( ) ,

,

A,B
1v v
0

e
B A
e
A B

t
t

J J ∗
=
=

=           (32) 

Thus, for any of two versions of the VEC, the KKM electrolyte and volume flows coincide with 

the apparent electrolyte and volume flows introduced in Sections 2 and 3.  

Recall that the above apparent fluxes do not describe the purely membrane transfer, since 

they also take into account the electrode processes. The only exception is the regime of zero 

current. At 0I = , the KKM vectors coincide, ( )( ) ( )( ) ( )A B
00 0 II I == =

= =Y Y Y . The latter becomes 

clear from the following sets of equalities 
( )( ) ( )( ) ( )A B

00 0

m
s s II I

J J J
== =

= =         (33) 

( )( ) ( )( ) ( )( ) ( )( ) ( )A A B B
v v v 00 0 0 0

v v v v  m
s w w s w w II I I I

J J J J J J J
== = = =

= + = + = =    (34) 

The chain of equalities given by Eq.(33) follows from Eqs.(14), whereas Eq.(34) is obtained 

while taking into account Eqs.(14) and (20). Thus, the first and second and components of the 

vector ( ) 0I =
Y  yield the actual transmembrane electrolyte and volume  flows, respectively. 

When the electric current is not zero, the equality of the KKM vectors, ( ) ( )A B=Y Y , is 

violated since ( ) ( )A B
s sJ J≠  and thus ( ) ( )A B

v vJ J≠ .  

To illustrate the regularities discussed above, we consider example of MgCl2 solution 

whose components are transported through a membrane. The illustrations given in Figs.5a and 

5b show two different versions of the VEC that are chosen for the same set of transmembrane 

fluxes as well as two different electrode couples. According to Eq.(13), when the electrode block 

transport of Cl− -ions, the apparent electrolyte flux is given as ( ) / 2Cl m
s Cl

J J J
−

−
∗ = = . The 

electrode flux of 2Mg + -ion is determined from the continuity condition for the electric current, I, 

2 2 / 2e m m
Mg Mg Cl

J J J+ + −= −  (Fig.5a). When the electrodes block transport of 2Mg + -ions, the apparent 
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electrolyte flux is given as 
2

2

Mg m
s Mg

J J J
+

+

 
 ∗  = = . The electrode flux of Cl− -ion is 

22e m m
Cl Mg Cl

J J J− + −= − +  (Fig.5b). 

 
   (a) 

 
     (b) 

Fig.5. Two versions of the Kedem Katchalsky-Michaeli couple of the Hypothetical 

Electrodes for the case of MgCl2 solution: the Hypothetical Electrodes block transport of 

Cl-- ions (a) or Mg2+- ions (b) 

 

The above example (Figs. 5 a and b) enables us to see that each of two KKM 

Thermodynamic Fluxes, ( )
v
ClJ

−

 and ( )2

v
MgJ

+

, differs from the transmembrane volume flow by the 

quantity v
eJ  which gives a hypothetical out- or inward “leakage” of volume due to the 
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electrochemical reactions involving, respectively, 2Mg + - or Cl− -ions. Accordingly, for the VEC 

shown in Fig.5a, 2 2v ve e
Mg Mg

J J + += , and, for those shown in Fig.5b, v ve e
Cl Cl

J J − −= . In two latter 

expressions, we introduce two quantities, 2v
Mg +  and v

Cl− , that are referred to as the partial molar 

volumes of the ions. In the above relationships, these quantities serve as coefficients interrelating 

the rates of electrochemical withdrawal (delivering) 2Mg +  (Cl− ) -ions from (to) the solution and 

the rate of respective solution volume changes. 

In the KKM theory [30,31], there are two other approximations that have been made 

while obtaining ∆Π  and E∆ . The first of them amounts to omitting the terms of order ( )vO c  in 

the expression for ∆Π . As shown in the end of section 3.1, such terms might be noticeable for 

sufficiently concentrated solution. The second of abovementioned approximations is that the 

terms of order of ( )( )vA BO p∆  have been omitted in the expression for E∆ . The analysis 

conducted in the present Section shows that the identification of vJ , which is given by Eqs.(30),  

as the transmembrane volume flow leads to certain error of order of the abovementioned term, 

( ) ( )ve
A B A BJ .  

For the ranges of parameters where the approximations work well, the KKM theory gives 

perfect and elegant description of membrane transport. The elegance is that the KKM theory 

deals with a purely thermodynamic analysis and does not employ extra-thermodynamic 

assumptions. However, to determine the frameworks for the KKM theory applicability and to 

extend it, one should know the meaning and properties of the partial molar volumes of different 

ions, ( )vA B .  

In Section 4, we will present a detailed discussion on that. Now, we only mention that, in 

contrast with the akin quantity attributed to electrolytes, v, and discussed in Section 3.1, ( )vA B  is 

not measured directly and is extracted from certain experimental data by using extra-

thermodynamic assumptions. Consequently, for 0I ≠ , refusing from the KKM approximation 

unavoidably requires using extra-thermodynamic assumptions regarding the quantity ( )vA B  (

2v
Mg +  and v

Cl− , in the example illustrated by Fig. 5). 

 

4. Partial molar volumes of ions and transmembrane volume flow  

A difficulty in describing the transmembrane flux in the presence of transmembrane 

electric current, 0I ≠ , originates from the fact that the electrolyte ions are transported through 

membrane in non-stoichiometric amounts. Therefore, it is required to introduce a 
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phenomenological quantity describing the changes of adjacent solution volume per unity of 

added amount of an individual ion, not the electrolyte. In the respective definition, the amount of 

the other ion should remain unaltered. Formally, the respective thermodynamic quantity, which 

is referred to as the partial molar volume of ion, can be introduced with the help of the thought 

experiment discussed next. 

 

4.1 Schemes of obtaining the partial molar volume of an ion 

Similarly to the scheme employed in Section 3.1, Eqs.(18)-(22), for defining the partial 

molar volume of electrolyte, we consider the system equation of state in the form representing 

the system volume as a function of several parameters. However, in contrast with Eq.(16), the 

present equation of state does not employ the electroneutrality condition given by Eq.(6a) and 

thus allows ion amounts, An  and Bn , to change independently from each other. As the proposed 

consideration admits appearance of electric charge in the system, it is necessary to introduce 

electric potential, Φ , as one of the parameters that define the system volume. Hence, the analogy 

of Eq.(16) can be written as 

( ), , , , ,A B wV V T p n n n= Φ      (35) 

The electric potential, Φ , has complex meaning in Statistical Physics and, in a thought 

experiment under consideration, can be regulated/measured with the help of a special electrode.  

 Now, we define the partial molar volume of ions as 

, , , ,

v
B W

A
A P T n n

V
n

Φ

 ∂
=  ∂ 

 (a)  
, , , ,

v
A W

B
B P T n n

V
n

Φ

 ∂
=  ∂ 

 (b)    (36) 

Thus, in the discussed thought experiment, the partial molar volume of ion A (or B), ( )vA B  is 

determined by considering the small change of solution volume, dV, due to an addition of small 

portion of the ion A (or B), ( )A Bdn , while maintaining constant pressure, P, temperature, T, 

amount of other ion ( )B An  and electric potential, Φ . The latter quantity can be held constant by 

using external electric charges that induce in the solution the electric potential opposite to that 

produced by the added charge, ( ) ( )A B A BFz dn .  

In the literature, we did not find any attempt of practical implementing the hypothetic 

thermodynamic scheme outlined above. Instead, in a great number of publications the partial 

molar volumes of individual ions are determined by using the measured partial molar volumes 

for a set of electrolytes with a common ion and applying the additivity rule [55]  

v v vA A B Bν ν= + ,          (37) 
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When the partial molar volume of the common ion is known, using Eq.(37) enables one to 

determine the volume for all other ions represented in the abovementioned set. Usually, by 

assuming certain value for partial molar volume of H + -ions, v
H + , the volumes are reconstructed 

for all other ions. It is often assumed that v 0H +

= . Another value, mol/cmH 3 5≅ν
+

, was 

proposed by Millero [63] on the basis of extra-thermodynamic reasons. 

 The above scheme based on Eq.(37), does not contradict the thermodynamic definition 

based on Eqs.(36). At the same time, one cannot exclude the situations when the additivity rule 

given by Eq.(37) is violated. Hence, we will consider Eq.(37) as an assumption whose validity 

has been confirmed for many electrolytes.  

 

4.2 Transmembrane volume flow 

 While inspecting Fig.3 and using the definition given by Eq.(37), one can represent the 

volume flow transferred through the membrane, as 

v v v vm m m m
A A B B w wJ J J J= + +          (38) 

Now, by combining Eqs.(5), (7), (37) and (38), we arrive at an expression which is symmetric 

with respect to both the ions 

v
v vv vm m A B

w w
A B

IJ J J
F z z

−
= + +

−
         (39) 

where J  is represented, as  
m m
A B

A B

J JJ
ν ν

+
=

+
           (40) 

The introduced quantity, J , can be interpreted in terms of the KKM theory. By combining 

Eqs.(30) and (40), one obtains 
( ) ( )A B
s A s B

A B

J JJ ν ν
ν ν

+
=

+
          (41) 

Thus, the quantity J  is a sort of average of two versions of the KKM electrolyte flux. For 0I = , 

according to Eqs.(33) and (41), J  coincides with the common KKM electrolyte flux, ( )
0

m

I
J

=
. 

 Another interesting meaning of the quantity J becomes clear while assuming that the 

VEC electrodes have transport numbers coinciding with the relative ionic strength of the 

respective ion in the solution, i.e., when ( )2 2 2
, , , /e

A B A B A B A A B Bt z c z c z c= + . By substituting the latter 

expression into the final expression of Eq.(12), after some transformations using Eqs.(5) and (6), 

we arrive at the right hand side of Eq.(40). Recall that Eq.(12) gives the apparent electrolyte flux, 

J ∗ , for an arbitrary set of electrode transport numbers, ,
e
A Bt . Thus, for the VEC with the 
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electrodes having the abovementioned transport numbers, the quantity J coincides with the 

apparent electrolyte flux, J ∗ . One can suggest several purely theoretical constructs that could be 

considered as models for such electrodes. However, we did not find practical implementations of 

them. 

 The transmembrane and KKM volume flows can be interrelated by combining Eqs.(30), 

(38) and (39)  

( ) ( )A B
v v vv vm

B A
B A

I IJ J J
Fz Fz

= + = +         (42) 

Alternatively, Eq.(42) could easily be derived by using VEC blocking either A or B ions. Such a 

derivation amounts to adding the terms describing the volume changes due to the 

electrochemical reactions, v , ,v /e
B A B AJ I Fz= , to the KKM volume flows, ( ),

v
A BJ . The added terms 

describe contribution of the ion which is not blocked. Note, however, the derivation represented 

above Eq.(42) was dealing with the membrane, only, an did not use VEC concept. It is a clear 

illustration of the fact that using the VEC concept is helpful in derivations, but is not a necessary 

step in the analysis.  

 Let us now come back to the expressions that are given by Eqs. (39) and (40) for 

describing the transmembrane volume flow, v
mJ . When 0I ≠ , the right hand side of Eq.(39) 

contains the term proportional to the difference between the individual ion partial molar 

volumes. To judge about the importance of the latter term on the right hand side of Eq.(39), next, 

we present a brief survey of literature data on the partial molar volumes of different ions and a 

discussion on the physical effects defining the observed values. 

 

4.3 Partial molar volumes of different ions. Electrostriction 

Three trends are observed for the partial molar volumes of inorganic ions at the infinity 

dilution limit, ( ),v 0A B , [52-65, 71-74, 76, 77]: 

a) for a series of chemically akin elements, with rising the molar mass, the respective ion 

volumes increase or remain approximately unaltered;  

b) anions have positive partial molar volumes that increase with molar mass and are 

always larger than that of cations with the same absolute values of charge;  

c) the volumes noticeably decrease with increasing the ion charge that leads to negative 

partial molar volumes of multi-charged cations.  

Now, we will illustrate these trends by some literature data reported for different ions. 
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Alkali Metals [71]. With increasing the molar mass, the partial molar volumes increase 

from slightly negative to positive values. Such a regularity is observed in the series Na+ -, K + -, 

Rb+ - and Cs+ -ions where ( )v 0A  changes from 6.62−  to 315.93 /cm mol . As for the Li+ -ion, it 

somewhat violates this regularity since its negative partial molar volume ( )36.29 /cm mol−  is 

reported to be slightly more than that of Na+ -ion ( )36.62 /cm mol− .  

Alkaline Earth Metals [71]. For the series 2Mg + -, 2Ca + -, 2Sr + - and 2Ba + -ions, with 

increasing the molar mas, the volumes increase, (i.e., decrease by the absolute values) from 

31.99−  to 323.29 /cm mol− . The described trend is violated in the case of transition from 2Ca + - 

to 2Sr + -ion for which there is a slight decrease of ( )v 0A  from 28.67−  to 329.18 /cm mol− . 

Transition Metals [54, 56, 63]. In the series 2Mn + -, 2Fe + -, 2Co + -, 2Ni + -and 2Zn + -ions, 

one observes negative values of a ( )v 0A  and slight monotonous increase from 2Fe +

( )3 25.3 /cm mol−  to 2Zn + ( )3 22.1 /cm mol− . However, the 2Mn + -ion violates the trend since 

it has the lowest molar mass in the series and the smallest absolute value of the negative partial 

molar volume ( )( )3v 0 18.3 /Mn cm mol= −  

Rare Earth Metals ( 3Az = + ) [61]. While considering the elements of the Lanthanide 

Series (numbers 57-71 in the Periodic Table), one observes a negative partial molar volumes. In 

this series, with increasing the molar mass, the volume slightly and non-monotonously varies 

between 342.0 /cm mol− , for 3La + -ion, to 348.8 /cm mol− , for 3Lu + -ion 

Halogens ( 1Az = − ) [52, 56, 71]. In the series F − , Cl− , Br−  and I − -ions, all the partial 

molar volumes are positive and monotonously increase from 4.25  to 341.63 /cm mol  

Polyatomic anions [52, 56, 71] The series 3NO−  ( )3 29.3 /cm mol ; 4ClO−  

( )3 49.53 /cm mol  and 2
4SO −  324.8 /cm mol , illustrates all the trends listed under item (b). 

Above, we summarized the existing experimental data on the infinity dilution limit which 

is approached by the partial molar volumes of different electrolytes and ions in aqueous solution. 

In the literature, the observed properties are explained through different mechanisms of the 

solvent reorganization by ions. In particular, the negative values of the ion partial molar volumes 

are explained trough the electrostriction produced by ions. The respective quantitative theory 

was proposed by Drude & Nernst who addressed the electrostriction in solvent due to the 

Columbic fields created by individual ions [48].  
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Fig.6 Illustration for electrostriction effect produced by one ion 

 

In the Drude & Nernst theory [48], the solvent is considered to be a homogenous 

compressible perfect dielectric medium which surrounds an ion (Fig.6). The ion is modeled as a 

spherical charged particle having the radius, a, and the charge, / NA A Aq ez Fz= = , where  
23 1N 6.02 10 mol−≈ ⋅  is the Avogadro number. The solvent is compressed due to the pressure 

gradient which is produced to compensate for the electrostriction force, ( )esf r , [81] given as  

( ) ( )21 d
2 d

w
es w

w T

Eε ∂
=  ∂ 

f r ∇          (43) 

where 2/ 4A wE q rπε=  is the local electric field strength created by the ion; wε  is the solvent 

dielectric permittivity. 

Such a compression results in a decrease of solvent volume which turns out to be 

proportional to the added amount of the ion A. For convenience of discussion, we represent the 

Drude & Nernst [48] final expression for the partial molar volume of an ion v (0)A , which is 

rederived in Appendix 2, in terms of two parameters, ( )3v /D N m mol−  and ( )3
intv /m mol , as  

4/3
2

int
int

vv (0) v 1
v
D N

A Az −
  
 = −  
   

        (44) 

Hereafter, we will refer to ( )3
intv /m mol  and ( )3v /D N m mol−  as the intrinsic and Drude-Nernst 

molar volumes, respectively. In terms employed in the Drude-Nernst theory, the abovementioned 

parameters are expressed as  

( )

( ) ( )

3
int

3/ 4
2

4v N                                              a  
3

ln1 3v            b   
26 N

w
D N

w T

a

F
p

π

ε
επ−

=

 ∂  =   ∂   

      (45) 
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where p is the pressure. Note that Eq.(45b) is written by using the SI convention. 

While interpreting the length scale parameter a as the ion crystallographic radius, we 

estimate it, roughly, as 1010a m−≈ . Such an estimation is made with understanding that the 

reported crystallographic radii of inorganic ions may deviate from the above estimation not more 

than by a factor of about two [56]. Accordingly, by applying Eq.(45a) for such an ion, one 

obtains for its intrinsic molar volume 3
intv 2.52 /сm mol≈ .  

The Drude-Nernst molar volume is completely defined by the dielectric properties of 

solvent. To evaluate vD N− , we substitute in Eq.(45b) 106.9 10 F /w mε −= ⋅ ; 49.65 10 /F C mol= ⋅  

and the dielectric compressibility value taken from refs. [50,51,58], 

( ) 10 1ln / 4.71 10w T
p Paε − −∂ ∂ = ⋅   . Finally, we obtain the Drude-Nernst molar volume, 

3v 3.64 /D N сm mol− ≈ . 

The partial molar, v (0)A , given by Eq.(44), can be represented as a sum of two terms. 

The first one is given by the intrinsic partial volume, intv , which is always positive. Expectedly, 

the second term is always negative because it describes the electrostriction which results in the 

compression of solvent. Consequently, the sign of partial molar volume becomes negative when 

the negative part prevail by absolute value, i.e., for sufficiently small ions having sufficiently 

high charges.  

For three absolute values of ion charge, the curves plotted in Fig.7 display the behavior 

discussed above and described by Eq.(44).  

 
Fig.7 Normalized partial molar volume of an ion as a function of the normalized 

intrinsic volume, Eq.(44) 
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Now, we inspect the graphs and the experimental data on v (0)A  listed above. While taking into 

account the estimations, 3v 3.64 /D N сm mol− ≈ , we arrive at the following conclusions. For 

cations, one can roughly fit the experimental data by choosing such values of intv  in Eq.(44) that 

correspond to the values of a that are slightly less than 1010 m− . For anions, one should assume 

appreciably larger a. The latter seems to correspond to the first Pauling rule [82].  

To address such behavior of anions in terms of the Drude & Nernst general approach, 

Mukerjee [57] and Glueckauf [59] considered voids that exist around the ions due to the 

discontinuous molecular structure of solvent. Accounting for that was conducted by introducing 

a void shell which envelopes the “bare” ion and thus separates it from the solvent. Accordingly, 

the intrinsic molar volume is interpreted as the sum of total volumes inside external shell 

boundaries for 1 mol of ions. Clearly, this volume is more than that of “bare” ions. Remarkably, 

the analysis of the Mukerjee & Glueckauf model [57, 59] leads to the result given by Eqs.(44) 

and (45b) but with the parameter intv  defined by the volumes inside the void shell boundaries.  

There are different more sophisticated models in the literature. Millero [62, 63] took into 

account the existence of disordered water molecules around the ion. Marcus [72, 73] considered 

the dielectric non-linearity in the vicinity of ion where the electric field is extremely strong. One 

should also mention the study of Couture and Laidler [56] where the authors, by analyzing the 

experimental data of Owen and Brinkley [52, 54], suggested interpolation formulas that 

represent the partial molar volumes of ions as functions of their crystallographic radii and 

charges. 

As we already mentioned in Section 3.2, the electrostriction mechanism was also analyzed by 

Redlich & Rosenfeld [50,51,58] for addressing the empirically established high dilution behavior 

of the apparent electrolyte volume as a function of concentration given by Eq.(27), v*(c). In this 

theory, instead of the Columbic field around an ion used by Drude & Nernst, the authors 

considered the Debye field thereby taking into account the screening effect [79]. The Debye 

screening effect results in two trends. On the one hand, the screening charge is attracted to a 

given ion to produce a contribution into the excess pressure around the ion that additionally 

compresses the solvent. On the other hand, the screening makes the electric field weaker than the 

purely Columbic field thereby decreasing electrostriction compared to the Drude & Nernst 

prediction.  

In the terms employed above, the constant ( )9/2 3/2/m molΚ  obtained by Redlich & 

Rosenfeld [50,51,58] for the limiting “square root” law given Eqs.(27) can be written as 
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      ∂ ∂+
= −      ∂ ∂      

    (46) 

In Appendix A2.3, we rederived Eq.(46). Note also that, in contrast with the original result 

[50,51,58], Eq.(46) is represented in the terms of the SI convention.  

 

4.4 Estimations of ion transfer contribution into the volume flow 

Let us estimate whether the terms, , ,v /B A B AI Fz , correcting the KKM volume flow, ( )A,B
vJ

, are important for obtaining the actual transmembrane flow, v
mJ , in Eq.(42). First, we compare 

the abovementioned correcting terms with the KKM terms expressing contribution of ions 
( )A,B

, ,v v /m
s A B A BJ J ν=  by introducing a criterion, α , which yields the ratio of the correcting to 

KKM term. While choosing for certainty the VEC, which blocs the ion A, one obtains the 

following chain of equalities in 

( )A

v v v
v vv

B B A B B
m m

B A A AB s

I I I
Fz J Fz JFz J

ν να = = =        (47) 

For obtaining the final expression in Eq.(47), we used Eq.(5). 

Consider now the ratio / m
A AI F z J  in the latter expression of Eq.(47). For 0I → , the 

ratio approaches zero, always, except for the cases when the transmembrane flux of the blocked 

ion, A, is proportional to the electric current, IJ m
A ≅ . In the latter case, the KKM volume flow 

also approaches zero when 0I →  such that the abovementioned ratio, / m
A AI F z J , approaches 

a finite value. The proportionality, IJ m
A ≅ , always occurs when the directions of fluxes are 

defined by electro-migration. In such cases, the transmembrane fluxes m
AJ  and m

BJ  are oppositely 

directed and, thus, m
A AI F z J> , as it is clear from Eq. (7).  

 The multiplier v / vB Bν  represented in the final expression of Eq.(47) can be greater than 

unity for inorganic electrolytes composed by multi-charged cations having negative partial molar 

volume, as stated in Sections 4.3. For example, while using the data on 2MgCl  listed in Sections 

3.1 and 4.3, one obtains that 2v / v 2
Mg + ≈ . Thus, at least, for all the above discussed cases, 1α >

, that defines importance of the term omitted in the KKM when ions bring noticeable 

contribution into the volume flow.  

 Let us now consider Eq.(39) to evaluate whether the latter term on the right hand side 

yields a measurable contribution into the transmembrane volume flow. Note that the term in 
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question depends on the partial molar volumes of ions, ,vA B , and disappears when they are equal. 

We will evaluate the abovementioned term by introducing the change of apparent zeta potential, 

ζ ∗∆ , due to the presence of respective contribution into the transmembrane volume flow. The 

apparent zeta potential is obtained while normalizing the transmembrane volume flow by the 

Smoluchowski factor /wI gχ ε η=  where η  is the solvent viscosity, and g is the conductivity of 

the equilibrium solution [16,17] 

( ) minv vv v v v A B A BA BA B A B

A B w A B w A B

Fc z z z z DI g
F z z F z z RT

η ηζ
χ ε ε ν ν

∗ +−− −
∆ = = >

− − +
  (48) 

For obtaining the final inequality of Eq.(48), the conductivity was estimated as 

( )2
min /A B A Bg F c z z z z D RT< + , where minD  is the diffusion coefficient of the slowest ion.  

 By introducing the hydrodynamic radius of the slowest ion with the help of the Stokes-

Einstein formula, min/ 6 Nh
slowesta RT Dπη= , and using Eq.(5), one obtains from the latter 

inequality of eq.(48) 

2
v v

3
A B

A Bh
slowest

z zF c
RT a

βζζ
∗

∗ ∆
∆ = > −         (49) 

where /F RTζ ζ=  and the value of the Bjerrum length is 2 10/ 4 N 7 10wF RT mβ πε −= ≈ ⋅ .  

For diversity, we will evaluate ζ ∗∆   attributed to 3FeCl  and take h
slowa  from the diffusion 

coefficient given in handbook [75] to see that 2 / 3 1h
slowestaβ ≈ . While considering an aqueous 

solution FeCl3 ( 3v 24 /
Cl

cm mol− ≈  and 3
3v 44 /

Fe
cm mol+ ≈ − , [59]), we  obtain the following 

rough estimation ( )0.2 /c mol lζ ∗∆ ≥  For concentrations of about 5 /mol l , which is close to 

solubility limit, ζ ∗∆ ≥ 1.  

When the electric current is passed through the membrane at zero concentration 

difference, one can see that the third term of the right hand side of Eq.(39) can be greater by 

magnitude than the first one. Such a situation definitely takes place when the ion fluxes are of 

migration origin and thus are directed oppositely. Both these terms describe the contribution of 

ions to the volume flow. Hence, the contribution of ions into the volume flow during 

electroosmosis can change the normalized value of the measured zeta potential within the 

estimated range 0.2-1. Note that it is of order or even more than the zeta-potentials attributed to 

the solvent transfer at such high concentrations. 
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5. Coupling between the transmembrane fluxes of different nature 

 Now, we will focus on a wide class of membrane transport phenomena listed in Section 

1.3 for which imposing a transmembrane flux of one physical nature results in generating 

transmembrane fluxes of other natures. Such a coupling between the fluxes is defined by 

membrane properties that are described by a set of phenomenological coefficients. In the present 

section, we will give the definitions of these coefficients on the basis of different thought 

experiments. The definitions to be proposed will be based on conservation laws and linearity 

reasons and thus will not use the Onsager theorem.  

 For introducing the abovementioned kinematic coefficients we subdivide all the 

membrane cross-effects in three groups that, as discussed in Section 1.1, are associated with 

mechano-chemical, electrochemical and electromechanical (electrokinetic) transformation of free 

energy. Next, we introduce an important quantity which will be employed while defining the 

coefficients that describes the abovementioned coupling between the fluxes 

 

5.1 Chemical fluxes 

As stated in Section 1, the basic property of membranes is the ability to provide transport 

of solution components in a proportion which differs from that taking place in the adjacent 

solutions. Accordingly, the major indicator of membrane separation effect is the changes of 

component concentrations in the adjacent solutions due to the transfer of them through the 

membrane. 

To describe the total rate of ion concentration changes within any of compartments of the 

VEC shown in Fig.3, we introduce an important quantity to which we will refer as the chemical 

flux of electrolyte, chJ . It is convenient to use different signs while defining this quantity for 

different compartments shown in Fig.3 

( ) ( )

( ) ( )

                           a  

                            b

ch

ch

dcJ V
d

dcJ V
d

τ

τ

′′ ′= −

′′′′ ′′=
       (50) 

In a similar manner, we define the ion chemical fluxes, ,
ch
A BJ  

( ) ( ) ( )

( ) ( ) ( )

,
, ,

,
, ,

         a

          b

A B ch ch
A B A B

A B ch ch
A B A B

dc
V J J

d
dc

V J J
d

ν
τ

ν
τ

′ ′ ′′ = − = −

′′ ′ ′′′′ = =
        (51) 

Below, we will demonstrate, that, in the general case, the chemical fluxes attributed to different 

compartments differ from each other, ( ) ( )ch chJ J′ ′′≠ and ( ) ( ), ,
ch ch
A B A BJ J′ ′′≠ . 
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 The chemical fluxes introduced above can be expressed in the terms of apparent fluxes, 

J ∗ , ,A BJ ∗  and vJ ∗ , defined by Eqs.(11), (15) and (18). By combining these definitions with 

Eqs.(50) and (51), one obtains 

( )
( )

v

v

                 (а)

                (b)

ch

ch

J J c J

J J c J

∗ ∗

∗ ∗

′ ′= −

′′ ′′= −
        (52) 

and 

( )
( )

, , , v

, , , v

                 (а)

                (b)

ch
A B A B A B

ch
A B A B A B

J J c J

J J c J

∗ ∗

∗ ∗

′ ′= −

′′ ′′= −
        (53) 

In Eqs.(52) and (53), it is taken into account that, according to the definitions given by Eqs.(11), 

(15) and (18), the apparent fluxes, J ∗ , vJ ∗  and ,A BJ ∗ , attributed to different compartments of the 

cell shown in Fig.3 are equal. Thus, the difference between chemical fluxes originates from the 

differences in electrolyte or ion concentrations, i.e., ( ) ( )ch chJ J′ ′′≠  and ( ) ( ), ,
ch ch
A B A BJ J′ ′′≠  when 

0c с с′ ′′∆ = − ≠ .  

At the same time, very often, within the frameworks of LIT, the non-linear terms, 

including bilinear ones, are ignored. As it follows from Eqs.(52) and (53) 

( ) ( ) ( )
( ) ( ) ( )

v

, , v ,

ch ch

ch ch
A B A B A B

J J O J с

J J O J с

∗

∗

′ ′′− = ∆

′ ′′− = ∆
        (54) 

Thus, while using the LIT, we will consider a single chemical flux for each of the ions, ch
AJ  and 

ch
BJ , as well as for electrolyte, chJ .  

However, it should be stressed that the above identification of chemical fluxes is valid for 

sufficiently small с∆  and vJ ∗ . Accordingly, while analyzing non-linear regimes with the help of 

continuous version of the LIT of [37-46], the chemical flux turns out to be discontinuous. 

By using Eqs.(10a) and (15), each of the ion chemical fluxes can be broken into the 

membrane and electrode parts 

( ) ( ), , ,

m ech ch ch
A B A B A BJ J J= −          (55) 

where  

( ) ( )

( ) ( )

, , , v , , v

, ,
, , v , v

, ,

       a

    b

mch m m m m
A B A B A B A B A B

e e
e A B A Bch e e

A B A B A B
A B A B

J J c J J cJ

It It
J c J cJ

Fz Fz

ν

ν

= − = −

= − = −
      (56) 
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For the case of zero current, when, according to Eq.(14), the transmembrane and apparent fluxes 

coincide, mJ J ∗=  and v v
mJ J ∗= , the VEC electrodes do not contribute to the mass exchange. 

Consequently, one can rewrite Eq.(53) and (54) in the terms of transmembrane fluxes as 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0
v0 0 0

0 0
v0 0 0

  =               (a)

  =             (b)

ch ch
A BI Ich m m

I I I
A B

ch ch
A BI Ich m m

I I I
A B

J J
J J c J

J J
J J c J

ν ν

ν ν

= =
= = =

= =
= = =

′ ′
′ ′= − =

′′ ′′
′′ ′′= − =

    (57) 

The chemical fluxes introduced in the present section bear information about the rates of 

concentration changes that can directly be measured in the adjacent solutions. Therefore, the 

chemical fluxes are convenient quantities for using in studies of mechano- and electrochemical 

coupling between the fluxes. In the next two sections these types of couplings are considered in 

details.  

 

5.2 Mechano-chemical coupling 

In this Section, we will consider coupling between the volume flow and the chemical flux 

at zero current regime, 0I = . Under this condition, we consider equal electrolyte concentrations 

in the compartments shown in Fig.3, c с с′ ′′= = . While imposing volume transfer through a 

membrane, one observes changes in the electrolyte concentrations in the adjacent solutions. 

According to Eqs.(50), the rates of such changes are defined by the chemical flux which takes a 

common value for both the compartments in the case under consideration. This common value is 

given by Eq.(57). Consequently, when the transmembrane flux coincides with the convective 

fluxes entering and leaving the membrane, v
m mJ J с= , no concentration changes are observed 

since ( ) 0
mchJ = . When ( ) 0

mchJ ≠ , one can observe concentration changes in the 

compartments.  

It is convenient to introduce the electrolyte reflection coefficient, σ , defined as  

,

0 0 0v v v ,
0 0 0

1 1
mch m
A B

m m m
c c cA B

I I I

JJ J
J с J с J с

σ
∆ = ∆ = ∆ =

= = =

    
= − = − = −           

      (58) 

Another coefficient, which is used for describing the mechano-chemical coupling 

between the fluxes, is referred to as the rejection, γ . The rejection is introduced for addressing 

the membrane separation effect for the schemes employed in baromembrane separation 

technologies when ( ) ( )ch chJ J′ ′′≠ . The rejection describes the rate of concentration changes in 

the compartment with the outward transmembrane volume flow (feed) under the condition of 
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constant concentration in the compartment with the inward transmembrane volume flow 

(permeate), compartments (‘) and (‘’) in Fig3, respectively. The latter of the abovementioned 

conditions means that ( ) 0chJ ′′ = . Consequently, the definition of the rejection, γ , takes the form 

( )

( )
v

0
0

ch

ch

m

J
I

J
J с

γ
′′′ =

=

 ′
 = −  
  

          (59) 

Also, we introduce the reflection coefficients of individual ions, Aσ  and Bσ , that are 

defined with help of a thought experiment where the electric potentials of the adjacent solutions 

are maintained to be equal 

( ), ,
,

0v , v ,0 00

1
mch m

A B A B
A B m m

cA B A Bc

J J
J c J c

σ
∆ =

∆ = ∆Φ=
∆Φ=

    = − = −      
       (60) 

Note, that, in the thought experiment considered in definition (60), the transmembrane current is 

not zero and the VEC in Fig.3 works with the electrodes shortly connected via external circuit 

 

5.3 Electrochemical coupling. Transport and transference numbers  

 The parameters responsible for selective transport of different ions through a membrane 

while passing the transmembrane electric current are referred to as the transport numbers. In the 

literature [1, 2, 27, 29-31, 35-46, 83, 84], one can face at least four types of transport numbers. 

All of them can be obtained from the results of measuring the rate of composition changes 

produced by the electric current passed through the membrane at equal concentrations in the 

adjacent solutions. 

To define the first two types of the transport numbers, we consider the overall rate of 

concentration changes in the cell shown in Fig.3. As stated in Section 5.1, such a rate is given by 

the ion chemical fluxes, ( ),
ch

A BJ , that are  common for both the solutions and defined by 

Eq.(53). According to Eq.(55), the chemical flux is split in the transmembrane and electrode 

parts, ( ),

mch
A BJ  and ( ),

ech
A BJ , respectively. When ( ),

ch
A BJ  have been measured and ( ),

ech
A BJ  are 

preliminary known from the data on electrode properties, one can determine ( ),

mch
A BJ . The 

obtained ( ),

mch
A BJ  can be used for obtaining the ion transport numbers attributed to the 

membrane, ,A Bt . The abovementioned two types of the transport numbers differ from each other 

by the hydraulic regime of measurements, v 0J =  and 0p∆ =  
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      = −        
0
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         (b)
c
p

∆ =
∆ =

  (61) 

The latter equality in Eq.(61a) follows from Eq.(56a). Clearly, 

1A B A Bt t t t∗ ∗+ = + =           (62) 

Thus, for obtaining the ion transport numbers of two types discussed above, ,A Bt  and ,A Bt∗ , one 

should measure the overall rates of the concentration changes under the respective hydraulic 

conditions indicated in Eqs.(61a) and (61b). Such measurements yields the chemical flux, ,
ch
A BJ , 

given by Eqs.(51) and (53) for these conditions. If one knows as well electrode chemical fluxes 

( ),

ech
A BJ  defined by Eq.(56b), the use of Eq.(55) yields ( ),

mch
A BJ  for the respective hydraulic 

conditions. Consequently, using Eqs.(61a) and (61b) enables obtaining ,A Bt  and ,A Bt∗ . 

A reasonable approach in executing the scheme outlined above is to use an electrode 

couple blocking the electrochemical reaction for the ion whose transport number is determined. 

Remarkably, in such a case, the electrode chemical flux of this ion is not zero because, in the 

presence of electric current, there is an electrode volume flow, v
eJ . The latter flow is not zero 

since the other ion, which is not blocked, definitely takes part in the electrode reactions thereby 

resulting in the electrode contribution into changing the solution volume. 

To illustrate the above statement, let us consider an electrode blocking the ion A or B. 

According to Eq.(56b), the chemical flux of ion A or B toward the electrode blocking the ion A 

or B, ( ) ( )e Ach
AJ  or ( ) ( )e Bch

BJ , are given, respectively, as  

( ) ( ) ( )

( ) ( ) ( )

v

v

 v

 v

e A e Ach
A A A B

B

e B e Bch
B B B A

A

IJ c J c
Fz

IJ c J c
Fz

ν

ν

= − = −

= − = −
        (63) 

While using Eqs.(55) and (63), the transmembrane chemical fluxes of ions A and B, ( )mch
AJ  and 

( )mch
BJ , are expressed in the following form 
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( ) ( )( )

( ) ( )( )

v

v

m Ach ch
A A A B

B

m Bch ch
B B B A

A

IJ J c
Fz

IJ J c
Fz

ν

ν

= −

= −
        (64) 

Consequently, applying the definitions given by Eqs.(61) and using the electroneutrality 

condition given by Eq.(5) yield 

( )

( )( )
, , , ,

, , , ,

1 v v

1 v v

H
A B A B B A B A

H

A B A B B A B A

t c t c

t c t c

ν

ν∗ ∗

= − +

= − +
        (65) 

In Eq.(65), we introduced the Hittorf transport numbers, ,
H
A Bt  and ( ),

H

A Bt∗  that are named after the 

method inventor [83,84]. They are two other types of the transport numbers. Obtaining these 

parameters is linked to the equations 

( )
v

, , ,
,

0
0

, , ,
,

0
0

J

J

m

A B A B A BH
A B

C
J

H A B A B A B
A B

C
p

Fz
t

I

Fz
t

I

ν

ν

∆ =
=

∗

∆ =
∆ =

 
=  

 

 
=  

 

         (66) 

where we introduced the flux ,JA B  which is expressed with the help of Eqs.(7), (56a), (64) and 

(65) and some transformations, as 

( ) ( ) ( ) ( ), ,
,

,J
1 v

Ach A B A B
A B

A B w w

J dm dmM M
c d dτ τ

   ′ ′′= = =   −    
      (67) 

In Eq.(67), the superscripts signify the ion which is blocked by the employed electrodes; Note 

that the second and third expressions in each of Eqs.(67) look somewhat similarly to the 

definition of the chemical flux given by Eq. (50). However, the solution volume, V, and 

concentration c in the respective compartments are replaced in Eqs.(67) by, respectively, the 

electrolyte solvent mass wM  and molality, / wm n M= .  

The Hittorf transport numbers defined by Eqs.(66) have some remarkable properties. 

With the help of Eqs.(38), (62) and (65), one can see that  

( ) ( ) 1
H HH H

A B A Bt t t t∗ ∗+ = + =          (68) 

For sufficiently diluted solutions, v 0c → , the Hittorf transport numbers approach to the 

transport numbers defined by Eqs. (61), , ,
H
A B A Bt t→ ; ( ), ,

H

A B A Bt t∗ ∗→ ; 1H H
A Bt t+ →  and 

( ) ( ) 1
H H

A Bt t∗ ∗+ → . As stated in Section 3.2, the approximation , ,v 1A B A Bc <<  is employed in the 

KKM theory [30, 31]. Hence, within the frameworks of the KKM approach, the transport 

numbers given by Eq.(61) can be considered as the Hittorf transport numbers. 
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 Additionally, one can introduce another group of parameters that will be referred to as the 

ion transference numbers, ,A Bθ  and ,A Bθ ∗ . These coefficients characterize coupling between the 

electric current and the transmembrane ion fluxes at zero volume flow and pressure difference, 

respectively,  

( )
v

, ,
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0 ,
0

, , ,v
, ,

00
0 00
0

=                                                                         (a)
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∆ =
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∆ =∆ =
∆ = ∆ =∆ =
∆ =

 
=   

 

      = = −          ,

            (b)B

A Bz

∗
  (69) 

The second equality in Eq.(69a) directly follows from Eq.(61a) whereas the latter equality in 

Eq.(69b) is obtained by combining Eqs.(56a) and (61b). 

 

5.4 Electromechanical (Electrokinetic) coupling 

Now, we focus on two Electrokinetic Phenomena being manifestations of 

electromechanical coupling of fluxes. The Streaming Current, which was first mentioned in the 

list given in the end of Section 1.3, amounts to generating the transmembrane electric current by 

passing through the membrane a volume flow at zero electric potential difference across the 

membrane. We will describe this coupling with the help electrokinetic charge density, ( )3/C mρ

, defined as 

0v
0

m
c

I
J

ρ
∆ =
∆Φ=

 
=  

 
           (70) 

Realize that the conditions indicated above for measuring ρ  are exactly the same as those 

presented in Eq.(60), which defines the individual ion reflection coefficients, Aσ  and Bσ . 

Consequently, by combing Eqs.(6), (7), (60) and (70), one obtains  

( ) ( )A A B A B B A BFc z Fc zρ ν σ σ ν σ σ= − = −        (71) 

Inspecting Eq.(71) reveals that the sign of ρ  coincides with the sign of charge of the ion whose 

reflection coefficient is lesser.  

 Electroosmosis is the second Electrokinetic Phenomenon mentioned in the Section 1.3. It 

is observed when the transmembrane electric current is passed through the membrane and 

produces the transmembrane volume flow due to the electromechanical coupling of fluxes at 

zero pressure difference across the membrane. For characterizing this coupling, it is convenient 

to use the electroosmotic coefficient, ( )3 /eoK m C . 
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          (72) 

Although ρ  and eoK  have mutually inverse dimensions, they are interrelated by a more complex 

relationship than the inverse proportionality. This relationship cannot be derived within the 

framework of purely kinematic analysis considered here. 

While using the definition given by Eq.(72), one can rewrite Eq.(69b) as 

,
, ,

0
0

 
m
A B

A B A B eo
c
p

J F
Fc K

I
θ ∗

∆ =
∆ =

 
= −  

 
        (73) 

 In the literature, one can face the following coefficient describing the solvent transfer in 

the presence of electric current  

v
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0
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       (74) 

According to the analogy with the coefficient defined by Eqs.(69), we name wθ  and wθ ∗  as the 

transference numbers of solvent attributed to the respective hydraulic regime of measurements. 

Note that, in some publications (see refs. [1, 38, 39], for example), the quantity wθ ∗  is referred to 

as the transport number of solvent. 

 By combining Eqs.(7), (37) and (38) with the definitions given by Eqs.(69) and (72)-(74), 

the solvent transference numbers, wθ  and wθ ∗ , are interrelated with the ion transference numbers, 

,A Bθ  and ,A Bθ ∗ , and the electroosmotic coefficient, eoK , as 

( )

v v                                (a)
v
1 v v v

           (b)
v

A A B B
w

w

eo A A B B
w

w

FK c

θ θθ

θ θ
θ

∗ ∗
∗

+
= −

− − −
=

       (75) 

Remarkably, Eq.(75b) yields a relationship between the parameters responsible for 

electrochemical and electromechanical transformations, respectively, wθ ∗ ; ,A Bθ ∗  and eoK . Next, 

we obtain a number of relationships that interconnect coefficients responsible for different type 

of free energy transduction.  
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5.5 Relationships between some coefficients describing coupling of fluxes 

In the present Section we will obtain several important relationships that interrelate the 

coefficient responsible for membrane selectivity and those responsible for Electrokinetic 

Phenomena.   

In the simultaneous presence of the transmembrane electric current and volume flow, for 

equal concentration in the adjacent compartments, the transmembrane ion flux can be 

represented as the following linear superposition.  

v
, , v ,

mJm I m
A B A B A BJ Il J l= +           (76) 

The above equation can be considered as a the Taylor expansion of the function of two variables, 

( ), v,m m
A BJ I J , where the leading, linear, terms are retained, only. Note that the zero order term is 

definitely equal to zero.  

 In the linear case, the coefficients ,
I
A Bl  and v

,

mJ
A Bl  in Eq.(76) are independent of the 

transmembrane electric current and volume flow and can be determined by analyzing particular 

regimes. Consequently, by using simultaneously Eqs.(58), (61a) and (76), one obtains 

( ),
, v ,

,

1A Bm m
A B A B

A B

It
J J c

Fz
ν σ= + −         (77) 

 Let us consider now the regime of measuring Streaming Current. The respective 

conditions are indicated in Eqs. (70). Accordingly, we replace m
AJ  and I in Eq. (77) with the help 

of Eqs. (60) and (70) to obtain 

( ) ( ) ( ) ( ) ( )0 0 0, , v , v , v
0 0 0,

1 1m m m
c c cA B A B A B A B

A B

c J t J c J
Fz

ρσ σ∆ = ∆ = ∆ =
∆Φ= ∆Φ= ∆Φ=

− = + −     (78) 

Obvious transformation of Eq.(78) conducted with the help of Eq.(71) yields  

A B B At tσ σ σ= +           (79) 

The above result, which interrelates the transport numbers defined by Eq.(61a) and the reflection 

coefficients defined by Eqs.(58) and (60), coincides with that derived in ref. [35]. Note that the 

above derivation was conducted by using the purely kinematic analysis. 

 Now, we will derive an important relationship between two types of transport numbers 

defined by Eqs (61).To this end, Eq. (61b) should be rewritten, as 

( )v

0
0

m m
A A A

A
c
p

J c J Fz
t

I
∗

∆ =
∆ =

 −
 =
  

         (80) 

The next step in the derivation is to adapt the general relationship given by Eq.(77) to the regime 

indicated in Eq.(61b). 
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( ) ( ) ( )0 00 v
0 00

1m mA
c cA c A
p pp A

tJ I J c
Fz

ν σ∆ = ∆ =∆ =
∆ = ∆ =∆ =

= + −        (81) 

After a short transformation, combining Eqs.(72), (80) and (81), yields 

, , , ,A B A B A B A B eot t Fc z Kν σ∗ = −          (82) 

Thus, Eq.(82) gives a relationship between the transport numbers measured at zero volume flow, 

,A Bt , and those measured at zero pressure difference, ,A Bt∗ . 

 Combining Eqs.(71), (79) and (82) enables us to express the electrolyte reflection 

coefficient through the transport numbers measured at zero pressure difference, ,A Bt∗  

1
A A B B

eo

t t
K

σ σσ
ρ

∗ ∗+
=

+
          (83) 

 Now, we express the electroosmotic coefficient, eoK , in terms of transference numbers 

,A Bθ ∗  and wθ ∗  defined by Eqs.(69b) and (75b) for the regime of 0p∆ = . While resolving Eq.(75b) 

with respect to eoK one obtains  

( )1 v v veo w w A A B BK
F

θ θ θ∗ ∗ ∗= + +         (84) 

By eliminating in Eq.(84) either vA  or vB  with the help of Eq. (37) and using Eqs.(5), (61) and 

(69), one rewrites Eq.(84) in two following equivalent forms 

1 v 1 vv v v vA B B A
eo w w w w

A B B A

K
F z F z

θ θθ θ
ν ν

∗ ∗
∗ ∗   

= + + = + +   
   

     (85) 

In the brackets of any of two equivalent results given by Eq.(85), while taking into account the 

first two terms, only, we obtain an expression which is completely equivalent to that derived on 

the basis of the KKM theory in ref.[38] (Eq.(7) of the reference). The simultaneous existence of 

two different correct versions corresponds to the dualism of the KKM theory which was 

discussed in details in Section 3.2. The third term in the brackets in both the expressions of 

Eq.(85) enables a generalization of the result reported in ref.[38] by accounting for the term 

missed in the KKM expression for the transmembrane volume flow. Recall Eq. (42) derived in 

Section 4.2 where each version of the KKM volume flows, ( ),
v

A BJ , is corrected by an additional 

term. Note that additions of the third terms in the expressions of Eq.(85) make the results equal 

whereas accounting for two terms, only, yields different predictions for eoK .  

Importantly, the correcting term in Eq.(85), , ,v /B A B Az , has the same order of absolute 

value as the second term in the brackets, , ,v/A B A Bθ ν∗ , and, in many cases, exceeds it. The latter 

can be illustrated by example of 2MgCl  for which 3v/ 7.6 /
Cl

cm molν − ≈  whereas 
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2 2
3v / 16 /

Mg Mg
z cm mol+ + ≈ −  (see the data listed in Sections 3.1 and 4.3). Hence, the corrections 

presented by the third term in brackets of Eq.(85) is important at least when the second term, 

which is taken into account in ref [38], yields a noticeable contribution 

 

6. Conclusions 

1) At none-zero transmembrane electric current, an analysis of transmembrane fluxes and 

changes in the composition of adjacent solutions should unavoidably consider a 

hypothetical or real couple of electrodes being a source and sink of the electric current. In 

the presence of such electrodes, the changes in the adjacent solution volumes and 

compositions, additionally to membrane, depend on the electrode properties. In the paper, 

we refer to such an electrode system as the Virtual Electrochemical Cell (VEC) 

2) In the Kedem - Katchalsky – Michaeli (KKM) theory, the VEC is formed by two 

identical electrodes that block discharge of one of the ions and are ideally reversible with 

respect to other one. Clearly, for any binary electrolyte, there are two versions of the 

KKM VEC.  

3) Two of three thermodynamic fluxes chosen in the KKM theory are the rates of changing 

the solution volume and electrolyte amount in the VEC compartments. However, in the 

KKM theory, these fluxes are identified with the transmembrane volume flow and 

electrolyte flux, respectively. In the present paper, it is stressed that such identifications 

are correct for zero electric current, only. For non-zero electric current, the 

aforementioned identifications can serve as an approximation which gives a good 

description for sufficiently low electrolyte concentrations. 

4) An important advantage of the abovementioned KKM approximation is that, for 

sufficiently low electrolyte concentrations, it gives a description in purely 

thermodynamic terms, i.e., using no extra-thermodynamic assumptions. Such an 

advantage is a result of using the partial molar volume of electrolyte while defining the 

transmembrane volume flow. The partial molar volume of electrolyte is a directly 

measured equilibrium thermodynamic parameter of the adjacent solutions. The latter is 

clear from the short review of the literature dealing with the widely used complex method 

of experimental obtaining this quantity. The method is based on measuring the 

concentration dependency of solution density and certain mathematical scheme of 

extracting the partial molar volume of solute from these dependencies. 

5) At non-zero current, the KKM approximation leads to an appreciable error when the 

electrolyte concentration is sufficiently high. In such situations, it is unavoidable to 

define the transmembrane volume flow by using such parameters as the partial molar 
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volumes of individual ions. In the studies reported in the literature, these parameters are 

obtained with the help of sophisticated scheme based on measuring partial molar volume 

for series of binary electrolytes with a common ion, using the Yung additivity rule and 

making certain extra-thermodynamic assumptions. 

6) A big massive of experimental and theoretical literature on the partial molar volume of 

inorganic ions reveals a number of remarkable regularities. The most important of them 

is the relatively large partial molar volume for anions which can reach the value of about 
350 /cm mol  and negative value of that for multi-charged cations of about 350 /cm mol−

, in some cases. The latter is a manifestation of electrostriction produced by the ion. As 

stated in the reviewed literature the difference in the behavior of cations and anions is 

explained through the differences in their intrinsic volumes. 

7) An important flux introduced in the paper is referred to as the chemical flux which is 

equal to the overall rate of concentration changes in each of the compartments separated 

by the membrane. In the linear case, the chemical fluxes attributed to different 

compartments turn out to be equal. This quantity is convenient for defining the kinetic 

coefficients responsible for membrane selectivity in different transfer processes. It should 

be measured in the experiments with mechano-chemical coupling of fluxes that are 

intended for obtaining refection coefficients of solute and individual ions. As well, 

measuring the chemical fluxes enables one to obtain different types of the ion transport 

numbers in the experiments with the electrochemical coupling.  

8) A set of fundamental relationships has been derived to interrelate the kinetic coefficients 

describing Electrokinetic Phenomena and those characterizing selectivity of membrane 

transfer in different hydraulic and galvanic regimes. The relationships are obtained while 

conducting the kinematic analysis of fluxes that are produced by the simultaneously 

imposed transmembrane electric current and volume flow. Remarkably, the derivation 

does not deal with the Thermodynamic Forces and does not use the Onsager Theorem. 

9) The obtained results can be used in  

- extending the KKM theory for the case of arbitrary concentrated electrolyte solutions; 

- addressing the electrochemical membrane separation and energy conversion effects as 

well as the respective technological schemes for the case of electrolyte solution having 

concentrations close to 3 310  /mol m  or more; 

- interpreting data of electrokinetic experiments conducted in solutions with the 

abovementioned high electrolyte concentrations where the contribution of ion migration 

into the volume flow can be appreciable; 
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- characterizing the selective properties of a membrane in concentrated solutions with the 

help of electrochemical and electrokinetic measurements; 

- mathematical modeling the processes of electrokinetic/electrodialytic remediation of soils 

and clays by removing pollutants containing heavy and/or organic ions; 

- exploring the possibilities of measuring the partial molar volumes of individual ions by 

combining electrochemical and electrokinetic measurements 

 

 

 

List of Symbols 

 

Latin Letters 

,A B - notation of ion  

,A Bc  - molar concentrations of ions 

wc - molar concentration of solvent 

c - molar concentration of electrolyte 

d - mass density of solution 

wd - mass density of pure solvent 

E - “electromotive force” in the KKM theory 

F - Faraday constant 

I - electric current 

,
m
A BJ - transmembrane ion fluxes 

,A BJ ∗ - apparent ion fluxes 

,
e
A BJ - electrode flux of ion 

m
wJ - transmembrane solvent flux 

v
mJ - transmembrane volume flow 

vJ ∗ - apparent volume flow 

J ∗ - apparent electrolyte flux 

sJ - electrolyte flux in the KKM theory 

chJ - chemical flux of electrolyte 

,
ch
A BJ - chemical flux of ion  
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( ),

mch
A BJ - transmembrane chemical flux of ion 

( ),

ech
A BJ - electrode chemical flux of ion 

eoK - electroosmotic coefficient  

L - matrix of kinetic coefficients 

Μ - molar mass of electrolyte 

m - molality 

N - Avogadro number 

n - electrolyte amount 

,A Bn - amount of ion  

p - pressure 

s - entropy 

T - absolute temperature 

,A Bt - ion transport numbers at zero transmembrane volume flow  

,A Bt∗  - ion transport numbers at zero pressure difference 

,
H
A Bt  - Hittorf transport numbers of ions at zero transmembrane volume flow 
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H
A Bt

∗
 - Hittorf transport numbers of ions at zero pressure difference 

V - volume of compartment 

,vA B  - molar volumes of ions 

vw -molar volume of solvent 

v - electrolyte molar volume 

v∗ - apparent molar volume of electrolyte 

W - Entropy Production Function 

X - vector of thermodynamic forces 

Y - vector of thermodynamic fluxes 

,A Bz  - ionic charges 

 

Greek letters 

γ - rejection 

∆ - difference between intensive thermodynamic parameters 

,A Bθ - ion transference numbers at zero transmembrane volume flow  

,A Bθ ∗  - ion transference numbers at zero pressure difference 
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wθ - transference number for solvent at zero transmembrane volume flow 

wθ ∗ - transference number for solvent at zero pressure difference 

Φ - electric potential 

kµ - chemical potentials of the kth solution component 

,A Bν - stoichiometric coefficients for reaction of electrolyte dissociation  

Π - osmotic pressure  

ρ - electrokinetic charge density  

σ - reflection coefficient of electrolyte 

,A Bσ - reflection coefficient of ion 
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Appendix: The partial and apparent molar volumes. Derivation of major relationships 
 

We consider the changes of volume by mixing the mass wM  of a solvent having volume 

wV  and mass density d /w w wM V=  with n moles of a solute having molar mass Μ and mass 

wM M n− = Μ . In the latter equality, M is the mass of the obtained solution having the volume 

V; the mass density d /M V= ; the molar solute concentration per unity of solution volume 

d /c n M=  and the molality m / wn M= . 

 

A1. Derivation of phenomenological relationships for obtaining the apparent and partial 

molar volumes of electrolyte 

Consequently, in order to express the apparent molar volume in terms of the measured 

densities d and dw , one can suggest the following identical transformations of the definition 

given by the first equality of Eq.(21)  

, ,

d d d d d d dv
d

d d d d d d
d dd d d d d

w

w w

w w w w w

p T N w w w w

w w w

w w w w w w w w

M M MM M M M M
V V

n M M M M M M

M V
M M M M c

∗

−
− − − −

− Μ = = Μ = Μ = + Μ =  − − − 

− − −Μ Μ Μ
+ Μ = + Μ = −

− −

  (A1) 
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or 

, ,

d d d d dv
d

d d d d
dd d mdd

w

w w w w

w w w

p T n w w

w w w

w w w

M M M M MM
V V

n M M M M
M

M M

∗

−
− + −

− Μ = = Μ = Μ = +  − − 

− −Μ
Μ = −

−

   (A2) 

Thus, the final expressions of Eqs.(A1) and (A2) give the results presented in Eq.(25) 

 The definition given by the first equality of Eq.(21) yields 

v wV n V∗= +            (A3) 

By combining Eqs.(25) and (A3) one obtains 

, , , ,

v vv v v m
m

w wp T n p T n

n
n

∗ ∗∗ ∗∂ ∂   = + = +   ∂ ∂   
       (A4) 

Using the definition of molality and Eq.(A3) gives 

( )v 1m mv
d d d

w

w w w w w w

c n Vn cV c
M V V

∗
∗

+  
= = = = + 

 
      (A5) 

Consequently, the molality is expressed as  

( )d 1 vw

cm
c ∗

=
−

          (A6) 

Differentiating both sides of Eq.(A6) enables one to obtain 

( )

2

2

v1
m

1 v dw

c
cd dc

c

∗

∗

∂
+

∂=
−

          (A7) 

While combining Eqs.(A4) and (A7), we arrive at the relation expressing the partial molar 

volume, v, through the function  ( )v c∗  and its derivative 

2

v 1 v vv v m v
vm 1

c c
cc

c

∗ ∗
∗ ∗∗

∗

∂ − ∂
= + = +

∂∂ ∂+
∂

       (A8) 

Thus, Eq.(A8) coincides with Eq.(26). 

 

A2. Derivation of expressions describing impact of the electrostriction effect on the partial ion 

volumes of ions and electrolytes 

 

A.2.1 Local density changes and partial molar volume of ion 
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 Now, we consider how the reorganization of solvent by the added solute changes the 

apparent molar volume. To this end, we introduce the local solvent density around a given ion, A 

or B, ( ) ( )dA B
l r , which is a function of the coordinate, r . For the case of low electrolyte 

concentration, we assume that the changes of density produced by the individual ions are 

additive. It is convenient to introduce the local perturbation of density due to the added ion A (or 

B), ( ) ( )dA Bδ r  

( ) ( ) ( ) ( )d d dA B A B
l wδ = −r r          (A9) 

 Consequently, the change of solvent density produced by ( )A Bn  moles of the added ion A (or B) 

is given by  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
w ( ) ( )

N
d d d N d N dA B A B A B A BA B

A B A B
V V V

n
dV c dV c dV

V
δ δ ν δ− = = =∫ ∫ ∫r r r   (A10) 

where N is the Avogadro number; ( ) ( ) ( )/A B A BA Bc n V cν= =  is the molar concentration of 

respective ion. 

 We divide the difference between the solution and pure solvent densities, d dw− , into two 

parts, namely, the solute contribution, Mc , and the change due to the solvent reorganization, 

dreorg∆ , as 

d d M dw reorgc− = + ∆           (A11) 

With the help of Eq.(A10), the solvent reorganization term, dreorg∆ , is represented in the form 

( ) ( ) ( ) ( )intd N d d v d N d d
solute

A B A B
reorg A B w A B

V V V

c dV c c dVν δ ν δ ν δ ν δ
−

   ∆ = + = − + +   ∫ ∫r r r r  

(A12) 

where intv  is the solute intrinsic partial molar volume which coincides with the intrinsic apparent 

molar volume and is given by  

( )int int int intv N Nsolute A B
A BV V Vν ν= = +         (A13) 

In Eq.(A13), int
soluteV  is the volume occupied by the ions originating from the dissociation of one 

electrolyte molecule according to Eq.(4). Consequently, the last integration in Eq.(A12) is 

conducted over the whole volume outside the representative ions. 

 By combining the last expression of Eq.(A1) with Eqs.(A11)-(A13), we arrive at the 

following common expression for the partial and apparent molar volumes of electrolyte 

( )int intv v v v v v N v vA B A B A B A B
A B A B A B A reorg B reorgV Vν ν ν ν ν ν ν ν∗ ∗ ∗= = + = + = + + +   (A14) 
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where the contributions into the ion apparent molar volumes due to the medium reorganization, 

vA
reorg  and vB

reorg  take the forms 

( ), ,Nv d
d

A

A B A B
reorg

w V V

dVδ
−

= − ∫ r          (A15) 

Thus, for the known intrinsic volumes, int
soluteV , int

AV , int
BV  and mass density perturbation around 

each of the ions, ( )dAδ r  and ( )dBδ r , by using Eqs.(A14) and (A15), one can predict the 

apparent molar volumes for both the electrolyte and the ions. 

 

A2.2 Derivation of the Drude-Nernst equation for the electrostriction impact on partial molar 

volume 

 Let us consider an individual ion having charge z in a solvent which is assumed to be a 

perfect dielectric whose permittivity depends on the mass density d and thus on the pressure p, 

( )dw w w pε ε=    . For such a liquid surrounding, the hydrostatic momentum balance is written in 

the form 

2 21 1d 0
2 d 2

w
w w

w T

p E Eε ε
  ∂

− + − =  ∂   
∇ ∇ ∇        (A16) 

where E is the magnitude of the electric field strength, E(r), produced by the ion under 

consideration. In Eq.(A16), the first term yields the mechanic force whereas two other terms 

yield the Helmholtz electric force consisting of the electrostriction part and the part proportional 

to the permittivity gradient, respectively [81]. 

 At constant temperature, ( )d d p=  and ( )d pε ε=    . Consequently, Eq.(A16) is 

rewritten, as 

2w

w

d1d d 0
2 d

w

T

E
p

ε  ∂ ∂
− + =  ∂ ∂   

∇ ∇         (A17) 

Now, we represent the unknown function ( )d r  in the form given by Eq.(A9) and substitute it in 

Eq.(A17) 

2 2

w

d1d d d 0
2 d

w w w
w

T T

E E
p p
ε εδ δ

     ∂ ∂ ∂
− + + =     ∂ ∂ ∂       

∇ ∇ ∇      (A18) 

By taking into account that 0ε⋅ =E∇  outside the ion and assuming the spherical symmetry, one 

obtains. 

( )
( )

2 2 1
4 4 w w

rze zeE
r r r

δε
πε π ε ε

 
= = − 

 
       (A19) 
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where ( ) ( ) wr rδε ε ε= − . While realizing that ( ) ( )2/ /wr O E pδε ε ε== ∂ ∂  and 

( )2d/d /w wO E pδ ε= ∂ ∂ , combining Eqs.(18) and (19) and retaining the first order perturbation 

terms, only, we obtain 
2

2

1d d 0
2 4

w
w

w T

ze
r p

εδ
π ε

    ∂
 − − =   ∂    

∇        (A20) 

Since d 0δ →  when r → ∞ , Eq.(A20) is easily integrated to yield the mass density perturbation, 

( )d rδ  

( ) 2
-

2

lndd 1
d d 2 4

wD N

w w w T

ze
p r
εδδ

ε π
∂   = =    ∂   

       (A21) 

where we introduced the notation -dD Nδ  intended to distinguish the Drude-Nernst mass density 

perturbation from that predicted by Redlich and Rosenfeld [50] by using the Debye-Hückel 

model [79]. Any of Eqs.(15) can be rewritten as 

( )- 2d
v 4 N

d
D N

reorg
wa

r
r dr

δ
π

∞

= − ∫         (A22) 

By combing Eqs.(A21) and (A22), we obtain the molar volume due to the reorganization of 

solvent, vreorg , in the form 

( )

( )

2 2

0

2 2

0

lnNv
8

lnNv
8

rA A
reorg

r T

rB B
reorg

r T

z e
p a

z e
p b

ε
πε ε

ε
πε ε

∂ 
= −  ∂ 

∂ 
= −  ∂ 

        (A23) 

where a and b are the ionic radii; 0ε  is the universal dielectric constant; 0/r wε ε ε=  is the relative 

permittivity of the solvent.  

 Thus, any of Eqs.(A23) gives the Drude-Nernst result for affect of electrostriction on the 

partial molar volume of ions. Within the frameworks of the Drude-Nernst model, the total partial 

molar volume of ion is a sum of intrinsic and electrostriction parts. Since the partial molar and 

apparent volumes of electrolyte turn out to be equal because of the independency of electrolyte 

concentration, v v∗ = , we obtain 

( )

( )

2 2
3

0

2 2
3

0

ln4 Nv v N
3 8

ln4 Nv v N
3 8

rA A A

r T

rB B B

r T

z ea
p a

z eb
p b

ε
π

πε ε

ε
π

πε ε

∗

∗

∂ 
= = −  ∂ 

∂ 
= = −  ∂ 

      (A24) 
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While introducing the intrinsic and Drude-Nernst contributions into the partial molar volume 

according to Eqs.(45), we arrive at Eq.(44) which is written for ion A, only.  

 

A.2.3 The high dilution limiting law for concentration dependency of apparent molar volume. 

Debye- Hückel approximation 

 Now, we will determine the contribution into the density changes, ( )dδ r , due to the 

electric field produced by the Debye-Hückel screening space charge [79]. To this end, similarly 

to the above analysis, we consider hydrostatic equilibrium around an individual ion and complete 

the analyses based on Eq.(A16) by additional taking into account the electrical force acting the 

Debye-Hückel space charge which surrounds the ions and has the local density ( )D Hρ − r . 

Consequently, Eq.(A16) is modified, as 

2 21 1d 0
2 d 2

w
D H D H w D H D H

w T

p E Eε ε ρ− − − −

  ∂
− + − + =  ∂   

E∇ ∇ ∇      (A25) 

In Eq. (A25),  

D H D Hψ− −= −E ∇           (A26) 

and, according to the Debye-Hückel theory [79], 

( ) ( )

2

exp
4 1

D H D H

D H
w

ze r a
a r

ρ εκ ψ

ψ κ
πε κ

− −

−

= −

= − −  +
       (A27) 

In Eqs.(A27) κ  is the Debye-Hückel parameter [79]. For the binary electrolyte under 

consideration 

( )2 2 2
2 A A B B

w

F z c z c
RT

κ
ε

+
=          (A28) 

By combining Eqs.(25)-(28) we obtain 

2 2 21 1 d 0
2 2 d

w
w D H D H

w T

p E εε κ ψ − −

  ∂ − − + =    ∂     
∇ ∇       (A29) 

By timing both the sides of Eq. (A29) by ( )d/
T

p∂ ∂  and ignoring the volumes of screening ions, 

i.e., assuming that ( )d dw p= , one obtains 

2 2 2d d1 1d d 0
2 2 d

w w w
w D H D H

wT T T

E
p p

εεκ ψ − −

     ∂ ∂ ∂
− + + =     ∂ ∂ ∂       

∇ ∇ ∇     (A30) 

As ( ) ( )2/ /wr O E pδε ε ε== ∂ ∂  and ( )2d/d /w O E pδ ε= ∂ ∂ , we retain the first order perturbation 

terms, only, to obtain 
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2 2 2wd1 1d d 0
2 2

w
D H w D H

T T

E
p p

εδ εκ ψ − −

    ∂ ∂
− − − =    ∂ ∂    

∇      (A31) 

By integrating Eq.(A31), we obtain  

( ) ( ) ( )- -d d d
d d d

N D R R

w w w

δ δ δ
= +

r r r
        (A32) 

where ( )-dD Nδ r  and ( )-dR Rδ r  are the local perturbations of density predicted from the Drude-

Nernst and Redlich-Rosenfeld models, respectively. The first one, ( )-dD Nδ r  is given by 

Eq.(A21), and the second one is represented with the help of Eqs.(A21), (A31) and (A32), as 

( ) ( ) ( ) ( )R-R 2 2 2 2d 1 1
d 2 2

w
D H D H

w T

E E
p

δ εβεκ ψ − −

 ∂  = + −   ∂ 

r
r r r     (A33) 

where ( )E r  is the Columbic field strength magnitude given by Eq.(A19) and 

( )w wd / / d
T

pβ = ∂ ∂  is the solvent compressibility. 

 By combining Eqs.(A15), (A32) and (A33), we obtain for the reorganization part 

apparent molar volume  

( ) ( )
( )

( )
( ) ( ) ( )

2

2

2 2 2
2

4

v v 0 N
16 1

1 1 exp 214 N
2 4 1

A
reoorq A

w

w

w aT

ze
a

a r r aze r dr
p a r

β κ
πε κ

κ κ κεπ
πε κ

∞

= − +
+

+ − + − −   ∂  
  ∂ +   

∫
  (A34) 

Passing to the limit 0aκ → , 

( ) ( )

( ) ( )

2

2

3 1v v 0
16 3

3 1v v 0
16 3

AA w
reoorq A

w w T

BB w
reoorq B

w w T

z e
N

p

z e
N

p

ε βκ
πε ε

ε βκ
πε ε

  ∂
= + −  ∂  

  ∂
= + −  ∂  

      (A35) 

Consequently, by using Eqs.(5), (A24), (A28), (A35) and recalling that ( )w wd / / d
T

pβ = ∂ ∂ , one 

obtains  

( )
3/ 22 2 3

w

d1 1v v 0
4 3dN

w wA A B B

w w T T

z z F c
p pRT
εν ν

ε επ

      ∂ ∂+
= + −      ∂ ∂      

   (A36) 

A comparison of Eqs.(A36) and (27) leads to Eq.(46). 
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