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Abstract

The paper deals with relationships between the individual transmembrane fluxes of binary
electrolyte solution components and the experimentally measurable quantities describing rates of
transfer processes, namely, the electric current, the transmembrane volume flow and the rates of
concentration changes in the solutions adjacent to the membrane. Also, we collected and
rigorously defined the kinetic coefficients describing the membrane selective and electrokinetic
properties. A set of useful relationships between these coefficients is derived.

An important specificity of the proposed analysis is that it does not use the Irreversible
Thermodynamic approach by analyzing no thermodynamic forces that generate the fluxes under
consideration. Instead, all the regularities are derived on the basis of conservation and linearity
reasons. The terminology “Kinematics of Fluxes” is proposed for such an analysis on the basis of
the analogy with Mechanics where Kinematics deals with regularities of motion by considering
no mechanic forces. The only thermodynamic steps of the analysis relate to the discussion on the
partial molar volumes of electrolyte and ions that are the equilibrium thermodynamic parameters
of the adjacent solutions. These parameters are important for interrelating the transmembrane
fluxes of the solution components and the transmembrane volume flow. The paper contains short
literature reviews concerned with the partial molar volumes of electrolyte and ions: the methods
of measurement, the obtained results and their theoretical interpretations. It is concluded from
the reviews that the classical theories should be corrected to make them applicable for
sufficiently concentrated solutions, 1M or higher. The proposed correction is taken into account

in the kinematic analysis.
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1. Introduction: Irreversible Thermodynamics and Kinematic of Fluxes

1.1 Membrane as electro- mechano- chemical transducer

Membranes are the layers of diverse nature that allow components of mixtures to be
transported through such layers in other proportions than those defined by the properties of
components in the mixture. This property motivated the use of such selective membranes in a
variety of technologies dealing with separation of components of various mixtures without the
changes of aggregate state. In particular, the components of electrolyte solutions are often
separated by using electrically- and pressure- driven membrane processes [1-3].

In many technological processes, membrane separation of mixtures is conducted by
consuming the external thermodynamic work which is partially stored in the system in the form
of additional Free Energy of separation products with reference to the initial mixture. Moreover,
a system of two solutions with different compositions always bears the additional Free Energy
with reference to their mixture. Consequently, by properly mixing these solutions, the system
can produce electrical or mechanical work. Such reversible (completely or partially) processes
can be organized with help of membranes having special selective properties with respect of the
solutions being mixed.

The abovementioned thermodynamic opportunity to obtain electrical and mechanical
work by mixing solutions is widely employed in analytical technique dealing with, respectively,
the ion-selective membrane electrodes [4] and the membrane osmometers for studying
macromolecular solutes [5]. Obviously, in the latter applications, the additional free energy is
converted to the work in low amounts that are insufficient for using in the Energy Industry.
However, in 1950™ and 1970™, it was suggested to utilize the giant Free Energy accumulated in
the sea water by reversible mixing it with the water from other natural sources having much
lower salinity [6,7]. It was proposed to conduct such a membrane mixing with obtaining
electrical [6] or mechanical [8] work. In 2000™, the interest to this project increased, and, during
the past decades, it became in the focus of intensive studies [9-15].

The above statement demonstrates the ability of membranes to serve as an
electrochemical and/or mechano-chemical transducer. While using membranes in contact with
two electrolyte solutions, one often observes the Electrokinetic Phenomena (Electroosmosis,
Streaming Potential and Current etc.) [16,17]. Hence, such a membrane is also an electro-
mechanical transducer.

The behavior of membranes as electro-mechano-chemical transducer was discussed

above for the synthetic membranes employed in different technologies. It should be noted that a



similar coupling between the electrical, mechanical and chemical processes exists in the case of
biological membranes that play an important role in the living activity of biological cells [18].

Remarkably, the membranes discussed above are very different by their chemical origin,
morphology and physical properties, but they show similar behavior in terms of
Thermodynamics. Therefore, more than six decades ago, Thermodynamics was chosen to be the
theoretical basis for studying Membrane Phenomena (MP). Since all the MP are observed under
non-equilibrium conditions, the Linear Irreversible Thermodynamics (LIT) [19,20] was

considered as a proper tool for addressing Membrane Phenomena.

1.2 Linear Irreversible Thermodynamics for addressing membrane phenomena

Within the frameworks of the LIT, the membrane transport of solution components is
described with the help of nxn matrix, L, whose elements are referred to as the kinetic
coefficients. This matrix is represented in the linear relationship
YT =LX" (1)
where the column vector, Y7, is a transposition of the row vector Y ={Y,,Y,,...Y, } which yields

a set of Thermodynamic Fluxes, describing the rates of the solution component transfer through

the membrane. The column vector, X" is the transposed raw vector X ={X;, X,,...X,} which

yields a set of Thermodynamic Forces that are the differences between some intensive
thermodynamic parameters, €,, attributed to the solutions adjacent to the membrane,
X, =AQ, =Q, —Qp, (Fig.1). Hereafter, the notations () and (") signify, respectively, the
quantities attributed to the agreed left and right hand solutions adjacent to the membrane (Fig.1).

The vector of Thermodynamic Forces, X, describes the external influences resulting in
the system departure from the thermodynamic equilibrium state. Accordingly, at X=0, the
system remains in the thermodynamic equilibrium state when all the fluxes are absent, i.e.,
Y =0. Thus, the right hand side of Eq.(1) yields the linear terms in the Taylor series expansion
of Thermodynamic Fluxes in terms of Thermodynamic Forces. Accordingly, while using the
linear relationship given by Eq.(1), the departure from the thermodynamic equilibrium is
assumed to be small, and the matrix of kinetic coefficients is considered to be independent of
external driving forces. Therefore, L is completely defined by the membrane properties. It
should be added that in many cases, accounting for the linear terms only is insufficient for
describing the system behavior.



X, =AQ, =0 -QF
X, =AQ, =0, -
X, =AQ, =0, -0

Fig.1. Thermodynamic Fluxes and Forces

By using the measured matrix of kinetic coefficients, L, one can address all the
membrane phenomena without knowledge about the membrane morphology and specific micro-
mechanisms responsible for the membrane selectivity and permeance. At the same time, studies
of such mechanisms can be conducted separately by analyzing the influence of membrane
morphology and the external conditions on the matrix of kinetic coefficients, L. In the literature,
there are hundreds of publications concerned with predictions of kinetic coefficients on the basis
of a variety of assumed models of the membrane morphology. As a simple example, we will just
mention only two of them where a membrane is considered to be a packed bed of charged solid
spheres [21,22].

A substantial progress in the Membrane Science was achieved due to the use of an
approach developed by Onsager who suggested a method of choosing convenient sets of
Thermodynamic Fluxes and Forces, Y and X [23, 24].

In refs.[23,24], Onsager considered the entropy, s, changes in a thermodynamically open
system involved in irreversible processes. These changes can be subdivided in two types: (i)
those produced due to the heat and mass exchange with a thermostat, ds, , and (ii) those

ex !

generated inside the system, ds. .. Hereafter, to the rate of entropy changes of the second type,

int *

ds.

int

/dz (where 7 is the time), we will refer as the Entropy Production Function (EPF),

W =ds, /dr. For the LIT case, the function, W, is a positive definite bilinear form of

int
Thermodynamic Fluxes and Forces.

Importantly, in some special cases, such a bilinear form takes the diagonal form
W =X.Y (2)
According to the Onsager theorem [23,24], if, and only if, the EPF takes the form given by
Eq.(2), the matrix L has the diagonal symmetry, L =L".



Thus, while conducting the LIT analysis, it is convenient to choose the sets of
Thermodynamic Forces and Fluxes in the manner allowing representing the EPF in the diagonal
form of Eqg.(1). Such a choice enables one to reduce the number of independent kinetic

coefficients substantially, by using the abovementioned symmetry rule, L =L". Each of the

independent coefficients L, can be measured with the help of an experimental scheme defined
by Eq.(1). While using the symmetry rule, obtaining a cross coefficient, L, (n=k),

simultaneously gives the value of the respective symmetric coefficient, L, .

Starting with the middle of previous century, the LIT approach based on the Onsager
theorem [23,24] has been widely used for analyzing the MP for a membrane placed between two
electrolyte solutions. In the studies of Mazur & Overbeek [25] and Lorenz [26], by using this
theorem, the authors interrelated the kinetic coefficients describing different Electrokinetic
Phenomena [27, 28]. It was demonstrated that the Electroosmotic and Streaming Potential
Coefficients are equal regardless the membrane origin and morphology. Also, the authors
interrelated the membrane electric conductances measured at zero transmembrane volume flow
and pressure difference as well as the hydraulic permeances measured at zero transmembrane
electric current and voltage.

In aforementioned refs.[25,26], the LIT analysis was conducted for the case when a
membrane is placed between two solutions having the same compositions as it is typical for
Electrokinetics [16, 17]. A more general case was addressed in the pioneering paper of
Staverman [27]. He used the LIT approach for analyzing the transport of components of a mixed
electrolyte solution driven through the membrane by the electric potential, pressure and ion
concentration differences. While considering the limiting case of equal compositions of the
adjacent electrolyte solutions, he rederived the results obtained for the Electrokinetic Phenomena
in refs.[25, 26].

The starting point of Staverman theory was the expression for the EPF having the
diagonal bilinear form given by Eq.(2) where the vectors of the Thermodynamic Forces and
Fluxes were given as
X= {A,uk}

Y ={J,} ©

where J, and Ay, are, respectively, the kth solution component transmembrane flux and

chemical potential difference across the membrane. By using such a form for the EPF,
Staverman [27] derived very general and elegant thermodynamic expressions for addressing
different MP.



Later, by transforming the EPF given by Egs.(2) and (3), Kedem & Katchalsky and
Michaeli & Kedem in their famous publications [28-31] derived several equivalent versions of
LIT equation sets describing the MP for membrane between two binary mixtures of the same
non-electrolyte substances [28 29] and between two solutions of the same binary electrolyte
[30,31]. Hereafter, we will refer to these studies and results as the KKM theory.

Detailed discussion of the KKM results is given in Section 3. Now, we only mention that

the Thermodynamic Fluxes were obtained in [30, 31] to be linear combinations of three solution

component fluxes, J,: two ions and solvent. The obtained combinations are interpreted by the

authors as the transmembrane solution volume flow, the electrolyte (salt) flux and electric
current. As demonstrated later [32-34], strictly speaking, the first and second combinations have
the abovementioned physical meanings at zero current, only. However, when electric current is
not zero, the interpretation suggested in [30, 31] can serve as a certain approximation which
allows the KKM fluxes and forces to be linked to a strictly defined thought experiments.

Within its validity range the KKM theory gives scheme of imposing and/or measuring the
Forces and Fluxes. The latter enabled the authors of [29-31] to introduce a set of six coefficients,
namely, the reflection coefficient; the hydraulic and osmotic permeances; the electric
conductance, the electric transport number for any of two ions; the Electroosmotic Coefficient.
The introduced coefficients have clear physical meaning and are referred to as the practical
coefficients in the relevant literature. Due to the symmetry of the obtained 3x3 matrix, L, the six
practical coefficients are sufficient to express all the nine matrix elements.

The wide field of applicability and the fact that the KKM equations contain only the
directly measurable and strictly defined quantities explain the great impact produced by the
KKM theory on the development of Membrane Science. The KKM equations triggered a
powerful flow of publications concerned with different aspects of Membrane Science and
defined its development for decades. References [35-46] comprise papers on membranes having
different nature and represent a small portion of the tremendous massive of studies using the

KKM theory that have been reported during the past two decades, only.

1.3 Kinematics of Fluxes and Membrane Phenomena

In different cases, for addressing electro-mechano-chemical transduction discussed in
Section 1.1, there is no need to use the scheme based on the Onsager theorem and outlined in the
previous Section. Some of the Membrane Phenomena manifest themselves as coupling between
transmembrane fluxes of different physical nature. In this paper, we use the terminology
“Kinematics of Fluxes” for signifying an analysis of membrane phenomena in terms of

transmembrane fluxes only, i.e., by considering no thermodynamic forces that generate these
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fluxes. Such a terminology is based on the analogy with Mechanics where Kinematics deals with
regularities of motion by considering no mechanic forces defining the regularities.

As stated in Section 1.1, the ability of membranes to transform free energy from one form
to another exists due to the membrane property to provide transfer of the adjacent solution
components in other proportions than those defined by the properties of the solutions. These
proportions can be characterized by a set of coefficients that show the contributions of each of
the solution component flux into a measurable transmembrane flux. Accordingly, these
coefficients bear information about selective properties of membranes with respect of the
transported solution components.

Two of three measurable Thermodynamic Fluxes of the KKM theory [30,31], namely, the
electric current and the volume flow can be imposed and controlled by means of external electric
and hydraulic sources. Below, we present a list of membrane phenomena to be analyzed within
the frameworks of Kinematic of Fluxes. These phenomena are observed while imposing electric
current or volume flow:

(a) Streaming Current is the transmembrane electric current driven by the volume flow

passed through the membrane;

(b) Electroosmosis is the transmembrane volume flow which is driven by the electric current
passed through the membrane;

(c) Reverse Osmosis is the composition changes produced in the solutions adjacent to a
membrane when the transmembrane solution volume flow is imposed at zero
transmembrane electric current;

(d) Electrodialysis Effect is a change of composition which is produced by the
transmembrane electric current in the solutions adjacent to membrane.

For addressing the effects listed above, one can introduce a set of coefficients characterizing

a given membrane. The coefficients should be introduced with the help of certain thought
experiments with the membrane. As well, it is possible to introduce a set of relationships
between these coefficients while taking into account that, in the linear case, one deals with a
superposition of the effects listed above.

The scheme presented in Fig.2 illustrates the complex couplings that can be observed
between the transmembrane electric current and volume flow and lead to combining the above
listed effects. For example, passing the electric current through a membrane under certain
conditions gives rise to both the volume flow and concentration changes due to the
Electroosmosis and Electrodialysis, respectively. Simultaneously, the produced volume flow

additionally contributes to the concentration changes due to Reverse Osmosis. Thus, one can



expect that the membrane parameters responsible for Electroosmosis, Electrodialysis and

Reverse Osmosis can be interrelated with each other.

Concentration

. S changes
\emod‘aws :
13

Electric
current

Reverse Osmosis

Volume flow |

Fig. 2 Electro-mechano-chemical effects due to the complex coupling between

transmembrane electric current and volume flow

Thus, it is important to establish relationships between the abovementioned coefficients
that, on the one hand, describe the membrane selective properties and, on the other hand, reflect
the membrane ability to conduct mechano-electro-chemical transformations of free energy. One
might add that, once obtaining such relationships with the help of the Flux Kinematic analysis,
one can use them in the LIT analysis based on the Onsager cross relationships.

The Flux Kinematic analysis requires knowing strict relationships between the individual
component transmembrane fluxes and the measured and imposed fluxes. For effects (a)-(d) listed
above, the latter fluxes are the transmembrane electric current and volume flow. As stated in
Section 1.2 by referencing to [32-34], for non-zero transmembrane electric current, the KKM
theory gives only an approximate expression for the transmembrane volume flow in terms of the
solution component fluxes. Therefore, it is required to derive a more general expression than that
given by the KKM theory and analyze how important is the correction to be obtained. It should
also be noted that the transmembrane volume flow gives the rate of the volume changes of the
solutions adjacent to the membrane. These rates are equal by magnitude and opposite by sign
due to the assumed incompressibility of the solutions [47]. At sufficiently high electrolyte
concentrations, it is expected that adding/removing electrolyte into/from a solution affects the
volume of solution, noticeably.

While considering the transmembrane volume flow, for analyzing the adjacent solution

volume changes, it is correct to use the Reversible Thermodynamics (Thermostatics) of the
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electrolyte dissolving. The latter is true since the LIT analysis of purely membrane transport is
always conducted by assuming the adjacent solutions to be in the equilibrium states that are close
to each other. Accordingly, one can use for such an analysis all the nontrivial results that have
been reported in the literature during over the century [48-78]. The results obtained in these
studies reveal the importance of the effects originating from the reorganization of solvent by the
dissolved electrolyte, in particular, by electrostriction produced by the individual ions. The latter
effect was predicted in the pioneering paper of Nernst & Drude [48].

Thus, it is important to obtain a correct expression for transmembrane volume flow with
accounting of the results of studies in Thermostatics of electrolyte solutions [48-78] and evaluate
the applicability limits of the KKM theory [30, 31] on this basis.

In the case of non-zero electric current, a difficulty in the abovementioned Thermostatic
analysis of adjacent solutions is associated with unavoidable contributions of the source and
sinks of electric current into the changes of the solution ionic compositions. These changes occur
additionally to those resulting from the membrane transport of ions and are defined by the
proportion according to which the ions transfer the current through the abovementioned source
and sink.

In order to avoid the problem outlined above, the authors of the KKM theory considered
the membrane with the adjacent solutions inside an electrochemical cell made up by a couple
identical electrodes being the said source and sink. The electrodes are assumed to be reversible
for one and indifferent for other of the binary electrolyte ions. Essentially, the KKM theory gives
the LIT description of such a cell with a membrane, not the membrane itself. The
abovementioned discrepancy between the KKM and the transmembrane volume flows is one of
examples of that. In Section 3, we will give a detailed critical analysis of fluxes considered in
[30, 31] as the transmembrane ones.

The electrochemical electrode couple introduced in the KKM theory can be understood as
an element of a real experimental set up. At the same time, the electrochemical cell made up by
such electrodes can be interpreted as a purely hypothetical construct. Accordingly, introducing
such a cell in the KKM theory can be considered as a convenient theoretical step for analyzing
regimes with non-zero current. Therefore, we will call such a hypothetical cell, as the Virtual
Electrochemical Cell (VEC). For addressing the purely membrane transport with the help of
VEC, the relevant theoretical analysis should include the following steps:

- to assume certain properties of the VEC electrodes;

- to interrelate the transmembrane fluxes and the rates of composition changes of the

adjacent solutions;
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to extract the regularities that are inherent in the purely membrane transport from the
information contained by the solution composition changes;

to ensure that the obtained regularities of membrane transport are independent of the
assumed properties of VEC.

The reasons stated in the presented section motivated us to use the purely kinematic

approach for conducting a systematical analysis of several important aspects of membrane

transport. Next, we will state these aspects more specifically.

1.4 Objectives and structure of the paper

The present study is intended to achieve following objectives.

1)

2)

3)

4)

To interrelate the individual transmembrane fluxes of the solution components with the
measurable or imposed rates that are referred to as the transmembrane electric current,
solution volume flow and electrolyte flux. For the electric current, such an interrelation is
trivial, but, for the other two rates, the results presented in literature require to be
extended for highly concentrated solution.

To collect the membrane parameters that are responsible for the selectivity of transport of
the individual solution components in the regimes of the imposed transmembrane electric
current and volume flow.

To address the coupling between the transmembrane electric current, solution volume
follow and electrolyte flux, in terms of the coefficients responsible for the membrane
selectivity with respect to different solution components. Such an analysis will give the
description of electro-mechano- chemical membrane phenomena listed in Section 1.3, as
(a)-(d).

By using the purely kinematic analysis, i.e., without the use of the Onsager theorem, to
establish relationships between different parameters responsible for the membrane
selectivity as well as between these parameters and the coefficients describing the

electro-mechano-chemical coupling of fluxes.

The objectives formulated above define the communication structure.

In Section 2, we introduce the VEC, which was mentioned in the end of Section 1.3, and

make some basic definition related to the rates of ion and electrolyte concentration changes in
the VEC and individual ionic fluxes.

In Section 3, the rate of volume changes in the compartments of the VEC is discussed. The

discussion employs an equilibrium thermodynamic parameter which is attributed to the adjacent
solutions and is referred to as the partial molar volume of electrolyte. In our opinion, the latter
quantity deserves more attention than it is usually paid in the membrane literature. Therefore,
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Section 3 contains a short survey of the literature concerned with the theoretical basis for
measuring the electrolyte partial molar volume, the respective experimental data and
explanations of their behavior. As well, Section 3 contains a detailed discussion of the KKM
theory. The discussion leads to conclusions regarding both the advantages and the restrictions of
the KKM theory.

One of the conclusions formulated in Section 3 is that the KKM theory requires an extension
to be capable of addressing sufficiently concentrated electrolyte solutions. In Section 4, it is
pointed out that, to this end, one should unavoidably use such parameters as the partial molar
volumes of individual ions. Accordingly, in Section 4, a survey of the literature is presented
about the nontrivial approaches to the experimental determining these parameters and a summary
of results reported in the literature for different ions. The survey also includes theoretical models
intended to describe different unexpected experimental results. Transmembrane volume flow,
which is written in Section 4 in terms of the partial molar volumes of individual ions, is
evaluated by using the literature results on the volumes.

In the Section 5, we introduce sets of coefficients that describe selective properties of
membrane with reference to the solution components and describe in these terms mechano-
chemical, electrochemical and electro-mechanical coupling between the fluxes. As well, a set of
important relationships is derived to interrelate the coefficients describing the membrane

selectivity under various imposed conditions.

2. Fluxes of ions and electrolyte

We consider a thought experiment employing two compartment cell sketched in Fig.3.
The compartments are separated from each other by the membrane under consideration and filled
by binary solutions of the same strong binary electrolyte, A B, , dissociating according to the
stoichiometric equation
A B, o>V ,A+vB 4)
where the integer numbers v, >0 and v, >0 are the stoichiometric coefficients. The
electroneutrality of initial electrolyte implies the validity of the relationship
VaZp+VgZy =0 (5)
where z, and z, are the charge numbers of ions. For imposing the electric current and the

volume flow through the membrane, the compartments are supplied by electrode and capillary

couples, respectively.
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Fig.3 Two compartment cell containing membrane

In order to analyze kinetics of the pure membrane transport of the solution components,
the rate of transport is assumed to be sufficiently slow to allow both the thermodynamic
equilibrium and the local electroneutrality to be maintained within the compartments.
Consequently, the solution components are assumed to be uniformly distributed within each of
the solutions filling the compartments.

By using the stoichiometric and electroneutrality equations, Eqgs.(4) and (5), respectively,
and assuming the total electroneutrality of each of the solutions, one can interrelate the total

amounts, n, z(mol), of ions, A or B, in any of the compartments and their spatially uniform

molar concentrations, c, , (mol /m?*)

et @
Va Ve
aoleoc=2 (b) (6)
Vo Vg \

r]AB
Chpn=— C
= ©)

where V and n are the volume of any of the compartments shown in Fig.3 and the electrolyte

amount inside this volume, respectively.

2.1 Virtual Electrochemical Cell (VEC)

Our attention is focused on the solution component transport through the membrane. This
transport gives rise to changes of the solution volume and component amounts in the adjacent
solutions (Fig.3). In the presence of electric current, unavoidably, all these quantities are also

changed due to the reactions at the electrodes of the VEC, which was already mentioned in
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Section 1.3, and now is used in the thought experiment sketched in Fig.3. We will refer to the
total rates of these combined changes as the respective apparent fluxes. As stated in Section 1.3,
within the frameworks of a theoretical scheme intended for obtaining transmembrane fluxes,
introducing the VEC with given electrode properties can be considered as a purely theoretical
step.

Consider the transmembrane fluxes of ions A and B, J} and Jg . These fluxes define the
electric current, |, transferred through the membrane according to equation
| =F (372, +352,) (7)

F is the Faraday constant.

Since the electroneutrality of solutions is maintained, the magnitude of electric current
remains the same in all crosssections of the cell sketched in Fig.3. However, through different
crosssections, the current may be transferred by ions in different proportion than that given by
Eq.(7).

The VEC electrodes are assumed to impose given portions of current being transferred

through them by each of the ions, t; and t; . It is also assumed that the solvent does not take part
in the electrode reactions and, thus, t; +tg =1. In particular, at the electrodes, individual ion
fluxes are defined by the abovementioned electrode transport numbers t; and t; (Fig.3).

e
Itag

Je = A8
A I:ZA,B

(8)

For simplicity, we consider the VEC electrodes having redox properties with respect to only one
type of ion - either A or B. According to such an assumption, each of the fluxes at the electrode

should always become zero at | =0. Such a situation can take place for two types of the VEC’s,

only

te=0; tt =1 VEC (A)

or 9)
ta=1t; =0 VEC (B)

Note that the cell notation proposed above is linked to the notation of the blocked ion, i.e., to the
ion for which the electrode transport number is zero. Importantly, the VEC’s defined by Eq.(9)
have been employed in the KKM theory [28,31] in the same role. In the analysis below, we will

use the general notation, t; and t3, with understanding that only two abovementioned couples

could be substituted for t; and tg .
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2.2. Transmembrane and apparent fluxes
Let us now combine Eq.(8) with the conservation laws written for each of the

components of solutions inside the cell shown in Fig.3. Accordingly, the transmembrane fluxes
of Aand Bions, J,', Jg' (J.5), and solvent, J;, can be interrelated with the rates of changes of
the ion and solvent amounts within the respective compartments of VEC, as

Ithg dnig i, dnjg

Jag = + = - a
he Fz,, dr  Fz,, dr @ (10)
dn’ dn’
Jh=—W___—w b
Yoodr dr (b)

where 7 is the time and nW(moI) is the solvent amount in the respective compartment. The
notations (") and (") signify the quantities attributed to the left and right hand side compartments

shown in Fig.3, respectively.
By combining Eqgs (6a) and (10a), one obtains:

an’__dn'_ - (11)
dr dr

where we introduced the apparent electrolyte flux, J*, which gives the rate of changing the

electrolyte amounts, n" and n”, in the VEC compartments (Fig. 3).

When the current, I, the electrode transport numbers, t 5, and the apparent electrolyte

flux, J*, are known, the actual transmembrane ion fluxes, J; and Jg, are reconstructed with

the help of Egs.(10a) and (11).
Using Eqgs.(6a), (10a) and (11) leads to the following expressions for J*

Inspecting two versions of the VEC given by Eq.(9) and using Eq.(12) give
J'=J311v, VEC (A)
or (13)
J =30 1vg VEC (B)
As it is clear from the first equality in EQ.(12), at zero current, | =0, the apparent

electrolyte flux takes the form

(37, =k =2y (14)

Va Ve
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where we introduced the actual transmembrane electrolyte flux, J™, which has a physical
meaning in the only case of zero current, 1 =0, i.e., when the ions are transferred through

membrane in stoichiometric amounts set by Eq.(4)

By using Egs.(10)-(12), one can also obtain expressions for apparent fluxes of ions, J,

and Jg
* dn;IAB an\B ItZB

—_—AB_ T AB_gm __AB _ 3%y 15
AB dT dZ' AB FZA'B AB ( )

3. Apparent volume flow
Simultaneously with the solute, the solvent is transferred through the membrane.

However, for practical needs, it is often more convenient to deal with the transmembrane
solution volume flow, J', rather than the sole solvent flux, J; .

Recall that each of the adjacent solutions is assumed to be infinitely close to its
equilibrium state. Hence, with the help of equilibrium equation of state, the solution volume can
be expressed as a function of absolute temperature, T, pressure, p, and amounts of solvent and

electrolyte, n, and n, respectively.
V=V (T,pn,n,) (16)

Consequently, a small change of the volume of any of the solutions can be represented as

dv = (ﬁj dT + (ﬂj dp+ (ﬂj dn + (ﬂj dn, 17)
aT p.n,N, 8p T.n,n, an T,p.ny anW T,p,n

We confine ourselves by analyzing the isothermal regimes that allows us to omit the first

term on the right hand side of Eq.(17). As well, the compressibility of electrolyte solutions is

close to that of water and takes value of order of 10™°Pa™ [47]. It means that even a high
pressure difference about 100 bar can change the volume of a given solution by 0.1%, not more.
Consequently, for lower pressure differences, one can omit the second term on the right hand
side of Eq.(17). Next, while taking into account Egs.(10b) and (11), one can obtain from Eq.(17)
the following equality

vV (18)
dr dr

where we introduced the apparent volume flow, J;, describing the equal changes of solution

volumes in the VEC compartments shown in Fig.3.
By inspecting the sketch in Fig.3, we present the following balance equation

IM=J04+3¢ (19)
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where JJ' is the transmembrane volume flow and J; is the volume flow associated with the

electrode reactions.

*
v

Below in this Section, we consider how the apparent volume flow, J_, is interrelated

with the solvent and electrolyte fluxes.

3.1 Partial and apparent molar volume of electrolyte
Let us write Eqg.(17) with omitted two first terms on the right hand side for each of two
compartments shown in Fig.3. By combining the obtained equations written in terms of time

derivatives with Egs.(10b) and (17), we express the apparent volume flow, J;, in the form
Jo=vl"+v I (20)
In Eq.(20), we introduced the partial molar volumes of electrolyte and solvent, v(m°/mol)

v,,(m*/mol), defined, respectively, as

oV
V=(a—nlm @

oV
&) ©

At constant temperature and pressure, V =V (n,n, ). It can be shown that V (n,n, ) is the

(21)

first order Euler homogeneous function, V (kn,kn, ) =kV (n,n, ). Such a property implies that

V(n,nw)zia—v) n+| n, (22)
on Jr o, n, )i o

w

By combining Eqgs.(6b), (21) and (22), one obtains a useful relationship
cv+c,v, =1 (23)
where ¢, =n, /V(mol/ms) is the solvent concentration. While using Egs.(20) and (23), we

express the transmembrane solvent flux through the apparent volume and electrolyte fluxes, as

J, v’
=Y ¢
1-cv

Ju

(24)

w

As it follows from Eq.(24), the electrolyte partial molar volume, v, is an important quantity

enabling one to interrelate the directly measurable apparent fluxes, J; and J*, and the

transmembrane solvent flux, J;; . Clearly, the role of this quantity becomes more important with

increasing the electrolyte concentration, c.
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As we mentioned in Section 1.3, the partial molar volumes of different electrolytes have
been intensively studied during a long period of time [48]-[78]. One of the nontrivial effects
discovered in these studies was that the electrolyte partial molar volume was found to be a

function of electrolyte concentration, v = v(c) . This function is obtained from the concentration
dependency of the apparent molar (molal, in many publications) volume, v*=v"(c), which is
the solution volume, V, change compared to the pure solvent volume, V,,, calculated per 1 mole
of the solute amount. The function v*(c) is determined from the measured mass density of
electrolyte solution, d(kg/m®), and pure solvent, d,,(kg/m°), by using one of the expressions

represented in the following chain of identities

i (V=V, _M_d(c)—dW_M_d(m)—dW_ .
vi(©) ( jm d cd, d  mdd, vi(m) ()

w w

where M (kg/mol) is the solute molar mass; m(mol/kg) is the solution molality. Detailed
derivation of Eq.(25) is given in Appendix Al.
While realizing that m:c/dw(l—cv*) and using the Egs.(23) and (25), one can

interrelate the specific and apparent molar volumes, as

. oV . oV . 1-cv’ oV
V=V +n| — =V +m| — =V + - c (26)
on T, om T, 142 o oc o,
ac ) ;.

The detailed derivation of Eq.(26) is also reproduced in the Appendix Al.

As it follows from Eq.(26), the partial and apparent molar volumes, v* and v, coincide
when the measured value of v* is independent of the solute molar concentration c. Otherwise,
they coincide in the limiting case of infinite dilution, ¢ — 0, only.

For the first time, the systematic experimental studies of apparent molar volume, v,,

based on the density measurements followed by the use of Eq.(26) have been reported by Mason

[49]. For solutions of different electrolytes, by fitting the measured concentration dependencies,

v"(c), Mason established the limiting law for high dilutions
V= v(0)+K\/E (a)

27
v:v(0)+§K\/E (b) @0

where K(m9’2/ mol3’2) is an adjustable parameter. Consequently, the common value of the

apparent and partial molar volumes at infinite dilutions, v*(0)=v(0), is obtained by
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extrapolating the measured dependency V*(\/E ) to ¢ —> 0. Note that Eq.(27b) can be obtained

by substituting (Eq.27a) into the final expression of Eq.(26) and retaining the the zero order term

and the term proportional to Je, only.

Some later, Redlich & Rosenfeld [50, 51] deduced an expression for the parameter K in
Eq.(27) by combining the Nernst & Drude concept [48] with the Debye-Hiickel theory of
electrolyte solutions [79]. In Section 5, we will present the Redlich & Rosenfeld analytical
expression supplemented by a discussion on it.

Owen &Brinkley [52, 54] criticized both the Mason limiting law given by Eq.(27) and
the prediction of K made by Redlich & Rosenfeld [50, 51]. Instead, Owen & Brinkley suggested
a more complex extrapolation formula which contained an additional parameter interpreted by
the authors as the closest approach distance between the ions. Later, Redlich & Meyer [58]
advocated Eq.(27) and their expression for K by demonstrating that the asymptotic behavior of
the Owen & Brinkley function at ¢ — 0 coincides with Eq.(27) with K predicted in refs. [50,
51]. In ref. [58], Redlich & Meyer also proposed a correction of extrapolation function given by
Eq.(27) by adding the third term on the right hand side of Eq.(27). The added term is assumed to
be proportional to the electrolyte concentration, ¢, with a coefficient used as an adjustable
parameter.

The density measurements data are processed with the help of Eq.(27), and the obtained

dependencies, v* (c) are fitted by using the Mason- Redlich & Meyer function or/and the Owen

& Brinkley one. Such a scheme has been conducted by different authors [49-78] for obtaining

the adjustable parameters, in particular, the partial molar volumes of electrolytes at infinite

dilutions, v*(0)=v(0). The values of the latter quantity are well documented for different
electrolytes. For a given electrolyte, within the range of ¢ <1 mol /I, the value of v(c) reported
in refs.[17-48] changes by about 10% compared to v(O). Below, we briefly summarize the
major data and regularities we found in the literature concerning v(O) for different electrolytes.
For inorganic electrolytes, the reported partial molar volumes, v(O), were found to be
negative and positive, and vary within the range —12 to 62( cm®/ mol) [49, 54, 56, 60-65, 72-74,

76]. A trend is observed: for a given series of electrolytes having the same sets of ion charges,
the partial molar volume increases with increasing the molar mass. However, in some cases, this

trend is violated. Next, we survey some experimental data reported on different electrolyte types
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The 1:1 electrolytes. With several exceptions (NaOH, KOH, LiOH, KF, AgF), the
partial molar volumes have positive value that noticeably exceed the sum of crystallographic

volumes of the respective ions. Except for the series including an acid and respective Lithium
and Sodium salts, the value of v(O) increases with increasing the electrolyte molar mass. The
partial molar volumes lie between —6.8 cm®/mol (NaOH ) and 57.7 cm®/mol (Csl ) [54, 56,
60, 62-64]

The 2:1 electrolytes. According to the available data (we did not find the information
about the respective bases having low solubility), the partial molar volumes have positive values

that increase with increasing the molar mass from 15.3 cm®/mol (MgCl,) to 42.5 cm®/mol (

Pb(NO;),). Interestingly, very often, 2:1 electrolytes have noticeably smaller v(0) than 1:1

electrolytes having lower molar mass. For example Pb(N03)2 has an appreciably larger molar

mass than Csl and a lower partial molar volume. [54, 56, 63-65]

The 1:2 electrolytes. All the partial molar volumes found in the literature are positive. In
the series consisting of Sulfuric Acid and sulfates of Alkali Metals, H,SO, (14.0 cm®/mol);
Li,SO, (12.2cm®/mol); Na,SO, (11.5cm®/mol); K,SO, (31.9cm®/mol) and Cs,SO, (
56.7 cm®/mol ), with increase of the molar mass, the values of v(O) either increase or remain

nearly constant. [54, 56, 64]
The 2:2 electrolytes. In all the found examples, MgSO, ; ZnSO,, FeSO,, CoSO,, NiSO,

, the partial molar volume turns out to be always negative. The volume absolute values are either

smaller or slightly exceeding 10 cm®/mol . [56, 64]

The 3:1 electrolytes. The partial molar volumes are positive and vary within a wide range

which, for the found data, lies between 7.7 cm’/mol (LuCl,) and 93.4 cm’/mol (La(CIO,),

). As it could be expected, v(O) is mostly defined by the molecular mass of anion taking close
values for salts having a common anion and different cations that belong to different parts of the
periodic table. For example, AICI; (12.9 cm*/mol) and EuCl, (12.1cm®/mol); Al(NO,), (
43.0 cm’/mol ) and Eu(NO,), (46.6 cm®/mol ) etc. [56, 61]

The above listed partial molar volumes of inorganic electrolytes demonstrate that the

terms of order of O(cv) might give noticeable contributions into the measured quantities for
sufficiently concentrated solutions, For example, even MgCI, close to its solubility limit (about

6 mol /1) provides cv = 0.09. Another example Al (N03)3 for which the estimations show cv =
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0.15 close of the solubility limit (about 3 mol/1). One can expect even higher values, cv>0.2,
for the salts of Rear Earth Metals.

Definitely, the terms of order of O(cv) are noticeable for some electrolytes containing
organic ion since the partial molar volumes were found in the literature to be within the range

100 to 300 (cmslmol)[66-70, 75, 77, 78]. Accordingly, the achievable volume fraction, cv,

sometimes can reach value of about 0.3. As well, such high volume fractions can be observed
when a charge stabilized colloid is considered as electrolyte [80].

The role of such terms will be discussed in the end of Section 4

3.2 Discussion on thermodynamic fluxes in Kedem- Katchalsky-Michaeli theory
In the present section, we will focus on KKM theory [30,31] which was briefly discussed

in Section 1. While considering membrane transport of binary electrolyte solution components,

the authors of KKM theory transformed the EPF, W, by choosing such vectors of the

Thermodynamic Forces and Fluxes, X and Y, that contain three components each and satisfy

Eq.(2):

X ={AIl, Ap—AIl, AE}  (a)

Y={3,/c, 3, 1) (b) 29)

where | is the transmembrane electric current given by Eq.(7); J, and J, are referred to as the

transmembrane electrolyte flux and volume flow in [30,31].

v R £ ,' Perfectly semipermeable
' \“' membranes

A X
r r kY ’ e
P -1 . J p'\'_l—l"'
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Fig. 4 lllustrations to the discussion on physical meaning of some Thermodynamic

Fluxes and Forces in the KKM theory: (a) Virtual Osmotic Pressure difference, AIT; (b) the

voltage, AE; the ion and solvent fluxes, J,5 and J; .

Later in this Section, we will show that such an interpretation is associated with an
approximation. In Section 5, we will estimate the range of parameters where such an
approximation yields a good description.

Although the present communication deals with thermodynamic fluxes, next, we shortly
comment the KKM set of thermodynamic forces given by Eq.(28a).

The quantity Ap (Pa) in Eq.(28a) signifies the pressure difference across the membrane;
c(mol / m3) is the solute concentration per unity of the solution volume in the solutions adjacent

to the membrane. Note that the concentrations in the adjacent solutions may differ from each
other. In refs.[30,31], the authors propose to use a mean solute concentration as the concentration
c. In our opinion, using any concentration, which lies between those attributed to the adjacent
solutions, does not lead to a higher error than the error originating from the use of linear
approximation which is inherent in the LIT approach.

Two other quantities on the right hand side of Eqs.(28a), AIT and AE, have non-trivial
physical meanings In Eq.(28a), AIT is the transmembrane difference between the intensive
thermodynamic parameter, IT, to which we will refer as the Virtual Osmotic Pressure (VOP) to
distinguish it from the actual osmotic pressure. It should be stressed that IT is not the pressure
although it has the pressure dimension. However, for a given solution, the VOP can be
determined by measuring the pressure difference in a special experiment where the solution is
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equilibrated with a pure solvent across a perfectly semipermeable membrane. The pressure
difference across such an ideal membrane will yield the intensive parameter IT attributed to a
given solution.

The above meaning of VOP is illustrated in Fig.4a showing a U-pipe whose elbows
contain the pure solvent and are separated by a plug. While bringing the elbows across two
perfectly semipermeable membranes in contact with the solutions separated by the membrane
under consideration, nothing changes in the cell shown in Fig.4a. Simultaneously, the pressure
differences across the perfectly semipermeable membranes are established to be IT" and I1".

Accordingly, the pressure difference across the plug in the U-pipe, Ap,,, , becomes equal to one
of the thermodynamic forces in Eq.(28a), Ap,,, =Ap —AII.

Thus, when the plug is supplied with means of sensing the pressure differences, such a U-

pipe could serve as a sensor for direct measuring the thermodynamic force Ap— AIl represented

in the KKM equation set given by Eq.(28a). In particular, while maintaining zero value of the
applied pressure difference, Ap =0, such a device gives the first thermodynamic force in
Eq.(28a), AIl.

Another hypothetical set up suggested in [30,31] for interpreting the Thermodynamic
Force, AE, is sketched by the red dashed lines in Fig. 4b. Remarkably, it coincides with the
VEC (B) shown in Fig 3 where the electrode transport numbers are given by the respective
condition from Eq.(9). The quantity AE is named in [30,31] as the Electromotive Force and is
interpreted there as the voltage which would exist between two external terminals of the VEC
electrodes shown in (Fig.4b). It should be noted that the name Electromotive Force seems to be
somewhat misleading terminology since, usually, it signifies the Open Circuit Voltage whereas,
in Eqg.(28a), one deals with a voltage in the presence of electric current through the cell.

Importantly, Eq.(9) implies two options of choosing VEC. The latter means that, strictly
speaking, the KKM theory suggests to use not a unique vector of Thermodynamic Fluxes, but

any of two vectors associated with blocking ions A or B, Y or Y® (Y*®). Consequently,

one can rewrite Eq.(28Db), as

YR =318 281 (29)
where the electric current, I, given by Eg. (7) is a common component of both the versions of
vector, Y*®) whereas, in the general case, the first and second components differ: JS(A) # JS(B)

and J&A) # JSB). While taking into account such a dualism inherent in the KKM theory, one can

rewrite the expressions suggested in refs.[30,31] for the first and second components of the flux

vector as
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(30)

Note that EQ.(30) comprises two equation sets. The first equation set is written with the
superscripts (A) and the subscript A, to address the VEC blocking the ion A. The second equation
set is attributed to the VEC blocking ion B, and thus one should use the superscript (B) and the

subscript B.
A comparison of Eq.(30) with Eqgs.(13) and (20) leads to the expected result
IBB (37, (31)
( )IE;LE
I = (37 ) m (32)
tag=0

Thus, for any of two versions of the VEC, the KKM electrolyte and volume flows coincide with
the apparent electrolyte and volume flows introduced in Sections 2 and 3.
Recall that the above apparent fluxes do not describe the purely membrane transfer, since

they also take into account the electrode processes. The only exception is the regime of zero

current. At | =0, the KKM vectors coincide, (Y(A)) :(Y(B))I ~=(Y),,- The latter becomes

1=0

clear from the following sets of equalities

(9, =(9) , =(3"),., (33)

(‘]\(/A))|:o=(JS(A)V+JWVW> =(JS(B)V+JWVW) =(J‘(’B))lzo :(J\r/n)'zo (34

1=0 1=0

The chain of equalities given by Eq.(33) follows from Egs.(14), whereas Eq.(34) is obtained
while taking into account Eqgs.(14) and (20). Thus, the first and second and components of the

vector (Y)IZO yield the actual transmembrane electrolyte and volume flows, respectively.
When the electric current is not zero, the equality of the KKM vectors, YA =v® s
violated since J'* = J'® and thus J*) = J(®).
To illustrate the regularities discussed above, we consider example of MgCl, solution
whose components are transported through a membrane. The illustrations given in Figs.5a and
5b show two different versions of the VEC that are chosen for the same set of transmembrane

fluxes as well as two different electrode couples. According to Eq.(13), when the electrode block
transport of CI -ions, the apparent electrolyte flux is given as J*:Jﬁc")ng,/z. The

electrode flux of Mg* -ion is determined from the continuity condition for the electric current, I,

J:,.gz+ = J&‘gb —JZ- 12 (Fig.5a). When the electrodes block transport of Mg?" -ions, the apparent
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Mg
electrolyte flux is given as J*:JS( ’ ):Jﬂgzw The electrode flux of CIl -ion is

3¢ =-230. +37 (Fig:5b).

cI- Mg?* cI-

(@)

m m
g T J'C',_

*’)
I

(b)
Fig.5. Two versions of the Kedem Katchalsky-Michaeli couple of the Hypothetical

Electrodes for the case of MgCl, solution: the Hypothetical Electrodes block transport of

CI'- ions (a) or Mg?*- ions (b)

The above example (Figs. 5 a and b) enables us to see that each of two KKM
Thermodynamic Fluxes, JSCF) and JSMQH), differs from the transmembrane volume flow by the

quantity J: which gives a hypothetical out- or inward “leakage” of volume due to the
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electrochemical reactions involving, respectively, Mg?*- or CI™ -ions. Accordingly, for the VEC

shown in Fig.5a, J; :J;gz+v and, for those shown in Fig.5b, J:=J° v__. In two latter

Mg?* ! cl- ¢l

expressions, we introduce two quantities, Vg and v_ _, that are referred to as the partial molar

o
volumes of the ions. In the above relationships, these quantities serve as coefficients interrelating
the rates of electrochemical withdrawal (delivering) Mg?" (Cl~) -ions from (to) the solution and
the rate of respective solution volume changes.

In the KKM theory [30,31], there are two other approximations that have been made
while obtaining AIT and AE . The first of them amounts to omitting the terms of order O(cv) in

the expression for AIT. As shown in the end of section 3.1, such terms might be noticeable for

sufficiently concentrated solution. The second of abovementioned approximations is that the

terms of order of O(VA(B)AD) have been omitted in the expression for AE. The analysis

conducted in the present Section shows that the identification of J,, which is given by Egs.(30),

as the transmembrane volume flow leads to certain error of order of the abovementioned term,
Ie)Vae)

For the ranges of parameters where the approximations work well, the KKM theory gives
perfect and elegant description of membrane transport. The elegance is that the KKM theory
deals with a purely thermodynamic analysis and does not employ extra-thermodynamic
assumptions. However, to determine the frameworks for the KKM theory applicability and to
extend it, one should know the meaning and properties of the partial molar volumes of different

ions, V.

In Section 4, we will present a detailed discussion on that. Now, we only mention that, in

contrast with the akin quantity attributed to electrolytes, v, and discussed in Section 3.1, v, g Is

not measured directly and is extracted from certain experimental data by using extra-
thermodynamic assumptions. Consequently, for | =0, refusing from the KKM approximation

unavoidably requires using extra-thermodynamic assumptions regarding the quantity V) (

V,. and v _, inthe example illustrated by Fig. 5).

Mgz+

4. Partial molar volumes of ions and transmembrane volume flow
A difficulty in describing the transmembrane flux in the presence of transmembrane
electric current, | =0, originates from the fact that the electrolyte ions are transported through

membrane in non-stoichiometric amounts. Therefore, it is required to introduce a
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phenomenological quantity describing the changes of adjacent solution volume per unity of
added amount of an individual ion, not the electrolyte. In the respective definition, the amount of
the other ion should remain unaltered. Formally, the respective thermodynamic quantity, which
is referred to as the partial molar volume of ion, can be introduced with the help of the thought

experiment discussed next.

4.1 Schemes of obtaining the partial molar volume of an ion

Similarly to the scheme employed in Section 3.1, Egs.(18)-(22), for defining the partial
molar volume of electrolyte, we consider the system equation of state in the form representing
the system volume as a function of several parameters. However, in contrast with Eq.(16), the
present equation of state does not employ the electroneutrality condition given by Eq.(6a) and
thus allows ion amounts, n, and ng, to change independently from each other. As the proposed
consideration admits appearance of electric charge in the system, it is necessary to introduce
electric potential, @, as one of the parameters that define the system volume. Hence, the analogy

of Eq.(16) can be written as
V =V(T,p,®,n,,ng,n,) (35)

B'''w
The electric potential, ®, has complex meaning in Statistical Physics and, in a thought
experiment under consideration, can be regulated/measured with the help of a special electrode.

Now, we define the partial molar volume of ions as

V= (ﬂJ (@) v = {ﬂ] (b) (36)
anA P.T.ng.ny @ anB P.T.naNy @

Thus, in the discussed thought experiment, the partial molar volume of ion A (or B), v,4, is

determined by considering the small change of solution volume, dV, due to an addition of small

portion of the ion A (or B), dnA(B), while maintaining constant pressure, P, temperature, T,
amount of other ion Na(a) and electric potential, ® . The latter quantity can be held constant by

using external electric charges that induce in the solution the electric potential opposite to that

produced by the added charge, Fz,,dn, .

In the literature, we did not find any attempt of practical implementing the hypothetic
thermodynamic scheme outlined above. Instead, in a great number of publications the partial
molar volumes of individual ions are determined by using the measured partial molar volumes
for a set of electrolytes with a common ion and applying the additivity rule [55]

V=V, +VVg, 37)
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When the partial molar volume of the common ion is known, using Eq.(37) enables one to

determine the volume for all other ions represented in the abovementioned set. Usually, by

assuming certain value for partial molar volume of H™-ions, v ., the volumes are reconstructed

for all other ions. It is often assumed that v =0. Another value, v =5cm®/mol, was
proposed by Millero [63] on the basis of extra-thermodynamic reasons.

The above scheme based on EQ.(37), does not contradict the thermodynamic definition
based on EQs.(36). At the same time, one cannot exclude the situations when the additivity rule
given by Eq.(37) is violated. Hence, we will consider Eq.(37) as an assumption whose validity

has been confirmed for many electrolytes.

4.2 Transmembrane volume flow
While inspecting Fig.3 and using the definition given by Eq.(37), one can represent the

volume flow transferred through the membrane, as

JI =33V, +JgVvg + IV, (38)
Now, by combining Egs.(5), (7), (37) and (38), we arrive at an expression which is symmetric
with respect to both the ions

J7=Jv+ J$VW+LM (39)

Fz,-12,
where J is represented, as
_Ja+dg

VptVg

J (40)

The introduced quantity, J, can be interpreted in terms of the KKM theory. By combining
Egs.(30) and (40), one obtains

J- JiA)vA + JS(B)VB
Va+Vg

(41)

Thus, the quantity J is a sort of average of two versions of the KKM electrolyte flux. For 1 =0,
according to Eqgs.(33) and (41), J coincides with the common KKM electrolyte flux, (J ”‘)I:O.

Another interesting meaning of the quantity J becomes clear while assuming that the

VEC electrodes have transport numbers coinciding with the relative ionic strength of the

respective ion in the solution, i.e., when t} ; =z ,C, 5 /(Z5C, + zécB). By substituting the latter

expression into the final expression of Eq.(12), after some transformations using Egs.(5) and (6),

we arrive at the right hand side of Eq.(40). Recall that Eq.(12) gives the apparent electrolyte flux,

J*, for an arbitrary set of electrode transport numbers, t;.. Thus, for the VEC with the
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electrodes having the abovementioned transport numbers, the quantity J coincides with the
apparent electrolyte flux, J*. One can suggest several purely theoretical constructs that could be
considered as models for such electrodes. However, we did not find practical implementations of
them.

The transmembrane and KKM volume flows can be interrelated by combining Egs.(30),
(38) and (39)
Jr =J§A)+LvB =J§B)+I—vA (42)

Fz, Fz,

Alternatively, Eq.(42) could easily be derived by using VEC blocking either A or B ions. Such a
derivation amounts to adding the terms describing the volume changes due to the

electrochemical reactions, J; = lv, ,/ Fzg ,, to the KKM volume flows, JéA'B) . The added terms

describe contribution of the ion which is not blocked. Note, however, the derivation represented
above EQ.(42) was dealing with the membrane, only, an did not use VEC concept. It is a clear
illustration of the fact that using the VEC concept is helpful in derivations, but is not a necessary
step in the analysis.

Let us now come back to the expressions that are given by Eqgs. (39) and (40) for

describing the transmembrane volume flow, J'. When 10, the right hand side of Eq.(39)

contains the term proportional to the difference between the individual ion partial molar
volumes. To judge about the importance of the latter term on the right hand side of Eq.(39), next,
we present a brief survey of literature data on the partial molar volumes of different ions and a

discussion on the physical effects defining the observed values.

4.3 Partial molar volumes of different ions. Electrostriction

Three trends are observed for the partial molar volumes of inorganic ions at the infinity
dilution limit, v, 5 (0), [52-65, 71-74, 76, 77]:

a) for a series of chemically akin elements, with rising the molar mass, the respective ion
volumes increase or remain approximately unaltered;

b) anions have positive partial molar volumes that increase with molar mass and are
always larger than that of cations with the same absolute values of charge;

c) the volumes noticeably decrease with increasing the ion charge that leads to negative
partial molar volumes of multi-charged cations.

Now, we will illustrate these trends by some literature data reported for different ions.
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Alkali Metals [71]. With increasing the molar mass, the partial molar volumes increase
from slightly negative to positive values. Such a regularity is observed in the series Na*-, K" -,

Rb*-and Cs*-ions where v, (0) changes from —6.62 to 15.93 cm®/mol . As for the Li*-ion, it
somewhat violates this regularity since its negative partial molar volume (—6.29 cm‘"’/mol) IS
reported to be slightly more than that of Na*-ion (—6.62 cm®/ mol).

Alkaline Earth Metals [71]. For the series Mg®*-, Ca®"-, Sr?*- and Ba®'-ions, with
increasing the molar mas, the volumes increase, (i.e., decrease by the absolute values) from
—31.99 to —23.29cm®/mol . The described trend is violated in the case of transition from Ca*" -

to Sr** -ion for which there is a slight decrease of v, (0) from —28.67 to —29.18cm®/mol .

Transition Metals [54, 56, 63]. In the series Mn**-, Fe*" -, Co* -, Ni*"-and Zn*"-ions,

one observes negative values of a vA(O) and slight monotonous increase from Fe*

( ~253 cm3/mol) to Zn“( 221 cm3/mol). However, the Mn®" -ion violates the trend since

it has the lowest molar mass in the series and the smallest absolute value of the negative partial

molar volume (VM” (0)=-18.3cm*/ mol)

Rare Earth Metals (z, =+3) [61]. While considering the elements of the Lanthanide
Series (numbers 57-71 in the Periodic Table), one observes a negative partial molar volumes. In
this series, with increasing the molar mass, the volume slightly and non-monotonously varies
between —42.0 cm®/mol , for La* -ion, to —48.8 cm®/mol , for Lu®* -ion

Halogens (z, =-1) [52, 56, 71]. In the series F~, CI~, Br~ and 1™ -ions, all the partial
molar volumes are positive and monotonously increase from 4.25 to 41.63 cm®/mol

Polyatomic anions [52, 56, 71] The series NO; ( 29.3cm’/mol); CIO;

( 49.53 cm3/mol) and SO;~ 24.8 cm®/mol , illustrates all the trends listed under item (b).

Above, we summarized the existing experimental data on the infinity dilution limit which
is approached by the partial molar volumes of different electrolytes and ions in aqueous solution.
In the literature, the observed properties are explained through different mechanisms of the
solvent reorganization by ions. In particular, the negative values of the ion partial molar volumes
are explained trough the electrostriction produced by ions. The respective quantitative theory
was proposed by Drude & Nernst who addressed the electrostriction in solvent due to the

Columbic fields created by individual ions [48].
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Fig.6 Hlustration for electrostriction effect produced by one ion

In the Drude & Nernst theory [48], the solvent is considered to be a homogenous
compressible perfect dielectric medium which surrounds an ion (Fig.6). The ion is modeled as a
spherical charged particle having the radius, a, and the charge, q,=ez, =Fz,/N, where
N ~6.02-10°mol " is the Avogadro number. The solvent is compressed due to the pressure

gradient which is produced to compensate for the electrostriction force, f (r) [81] given as

fes(r):%dwﬂgjwj v(E?) (43)

2

where E =q,/4xe,r" is the local electric field strength created by the ion; ¢, is the solvent

dielectric permittivity.
Such a compression results in a decrease of solvent volume which turns out to be
proportional to the added amount of the ion A. For convenience of discussion, we represent the

Drude & Nernst [48] final expression for the partial molar volume of an ion v,(0), which is

rederived in Appendix 2, in terms of two parameters, v,,_, (m°/mol) and v,

int

Va (0) = Vint [1_ Zf\ (VD—_NJ } (44)
Vint

Hereafter, we will refer to v.

int

(m3/mol), as

(m®/mol) and v,_ (m®/mol) as the intrinsic and Drude-Nernst

molar volumes, respectively. In terms employed in the Drude-Nernst theory, the abovementioned

parameters are expressed as

v, :%”am (a)
v o1 3F2[dIn(e,) " (b) (49)
"N o6VaN |26, 0 |
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where p is the pressure. Note that Eq.(45b) is written by using the SI convention.

While interpreting the length scale parameter a as the ion crystallographic radius, we
estimate it, roughly, as a~10""m. Such an estimation is made with understanding that the
reported crystallographic radii of inorganic ions may deviate from the above estimation not more
than by a factor of about two [56]. Accordingly, by applying Eq.(45a) for such an ion, one

obtains for its intrinsic molar volume v, ~ 2.52 cm® I mol .

The Drude-Nernst molar volume is completely defined by the dielectric properties of
solvent. To evaluate v,_,, we substitute in Eq.(45b) ¢,=6.9-10"F/m; F =9.65-10'C/mol
and  the dielectric  compressibility  value  taken  from refs. [50,51,58],

[@In(s,)/ep] =471-10%Pa™. Finally, we obtain the Drude-Nemnst molar volume,

Vo ~3.64 cm® I'mol .
The partial molar, v,(0), given by Eq.(44), can be represented as a sum of two terms.

The first one is given by the intrinsic partial volume, v. , which is always positive. Expectedly,

int ?
the second term is always negative because it describes the electrostriction which results in the
compression of solvent. Consequently, the sign of partial molar volume becomes negative when
the negative part prevail by absolute value, i.e., for sufficiently small ions having sufficiently
high charges.

For three absolute values of ion charge, the curves plotted in Fig.7 display the behavior
discussed above and described by Eq.(44).

10—+

|24 =1

r
v mt * § DN

Fig.7 Normalized partial molar volume of an ion as a function of the normalized

intrinsic volume, Eq.(44)
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Now, we inspect the graphs and the experimental data on v,(0) listed above. While taking into
account the estimations, v,_, ~3.64 cm®/mol, we arrive at the following conclusions. For

cations, one can roughly fit the experimental data by choosing such values of v. . in Eq.(44) that

int
correspond to the values of a that are slightly less than 10™°m. For anions, one should assume
appreciably larger a. The latter seems to correspond to the first Pauling rule [82].

To address such behavior of anions in terms of the Drude & Nernst general approach,
Mukerjee [57] and Glueckauf [59] considered voids that exist around the ions due to the
discontinuous molecular structure of solvent. Accounting for that was conducted by introducing
a void shell which envelopes the “bare” ion and thus separates it from the solvent. Accordingly,
the intrinsic molar volume is interpreted as the sum of total volumes inside external shell
boundaries for 1 mol of ions. Clearly, this volume is more than that of “bare” ions. Remarkably,
the analysis of the Mukerjee & Glueckauf model [57, 59] leads to the result given by Eqgs.(44)

and (45b) but with the parameter v. . defined by the volumes inside the void shell boundaries.

int

There are different more sophisticated models in the literature. Millero [62, 63] took into
account the existence of disordered water molecules around the ion. Marcus [72, 73] considered
the dielectric non-linearity in the vicinity of ion where the electric field is extremely strong. One
should also mention the study of Couture and Laidler [56] where the authors, by analyzing the
experimental data of Owen and Brinkley [52, 54], suggested interpolation formulas that
represent the partial molar volumes of ions as functions of their crystallographic radii and
charges.

As we already mentioned in Section 3.2, the electrostriction mechanism was also analyzed by
Redlich & Rosenfeld [50,51,58] for addressing the empirically established high dilution behavior
of the apparent electrolyte volume as a function of concentration given by Eq.(27), v'(c). In this
theory, instead of the Columbic field around an ion used by Drude & Nernst, the authors
considered the Debye field thereby taking into account the screening effect [79]. The Debye
screening effect results in two trends. On the one hand, the screening charge is attracted to a
given ion to produce a contribution into the excess pressure around the ion that additionally
compresses the solvent. On the other hand, the screening makes the electric field weaker than the
purely Columbic field thereby decreasing electrostriction compared to the Drude & Nernst

prediction.

In the terms employed above, the constant K(mg’Z/moI”) obtained by Redlich &

Rosenfeld [50,51,58] for the limiting “square root” law given Eqgs.(27) can be written as
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o _[VazatveZs TR [1(es,) 1 (&, (6)
4e,, Nz+RT [ &, p ). 3d,{ dp ),

In Appendix A2.3, we rederived EQ.(46). Note also that, in contrast with the original result

[50,51,58], Eq.(46) is represented in the terms of the SI convention.

4.4 Estimations of ion transfer contribution into the volume flow

(A.B)

Let us estimate whether the terms, v, , / Fz, ,, correcting the KKM volume flow, J
, are important for obtaining the actual transmembrane flow, J.', in Eq.(42). First, we compare
the abovementioned correcting terms with the KKM terms expressing contribution of ions
JS(A'B)Vz JagV/v,g by introducing a criterion, o, which yields the ratio of the correcting to

KKM term. While choosing for certainty the VEC, which blocs the ion A, one obtains the
following chain of equalities in

_| Vv, |_| IVgvg |

_| v |
a_|FzBJ§A>v|_|FzBJ;“v|_|FzAJ;;V| (47)

For obtaining the final expression in Eq.(47), we used Eq.(5).

Consider now the ratio |I|/ F|zAJ,T| in the latter expression of Eq.(47). For 1 — 0, the

ratio approaches zero, always, except for the cases when the transmembrane flux of the blocked

ion, A, is proportional to the electric current, J§ = | . In the latter case, the KKM volume flow

also approaches zero when | — 0 such that the abovementioned ratio, |I|/ F |zAJ'A]1

, approaches
a finite value. The proportionality, J =1, always occurs when the directions of fluxes are
defined by electro-migration. In such cases, the transmembrane fluxes J,' and Jg are oppositely
directed and, thus, [I|> F |zAJQ\“| , as it is clear from Eq. (7).

The multiplier |vaB /v| represented in the final expression of Eq.(47) can be greater than

unity for inorganic electrolytes composed by multi-charged cations having negative partial molar

volume, as stated in Sections 4.3. For example, while using the data on MgCl, listed in Sections

3.1 and 4.3, one obtains that

Vg /v‘ ~ 2. Thus, at least, for all the above discussed cases, o >1

, that defines importance of the term omitted in the KKM when ions bring noticeable
contribution into the volume flow.
Let us now consider Eq.(39) to evaluate whether the latter term on the right hand side

yields a measurable contribution into the transmembrane volume flow. Note that the term in
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question depends on the partial molar volumes of ions, v, ¢, and disappears when they are equal.
We will evaluate the abovementioned term by introducing the change of apparent zeta potential,
A", due to the presence of respective contribution into the transmembrane volume flow. The
apparent zeta potential is obtained while normalizing the transmembrane volume flow by the
Smoluchowski factor y =¢,1/ng where 7 is the solvent viscosity, and g is the conductivity of

the equilibrium solution [16,17]

V| | 18 Va1 Vo~ va] Felzazel (2 #[2) D

|FZZ —ZB| |F€ z —ZB| &, VatVg RT (48)

For obtaining the final inequality of EQq.(48), the conductivity was estimated as

9 < F’¢|2,2(|2] +|2s|) Dyin / RT , where D, is the diffusion coefficient of the slowest ion.

By introducing the hydrodynamic radius of the slowest ion with the help of the Stokes-

Einstein formula, a' .. =RT/6znD_ N, and using Eq.(5), one obtains from the latter

slowest min

inequality of eq.(48)

A F 2p|z,2
g“ fLAB| C|v,y =V

slowest

(49)

where £ =¢F/RT and the value of the Bjerrum length is = F?/4ze, RTN~7-10"°m.

For diversity, we will evaluate from the diffusion

slow

coefficient given in handbook [75] to see that 23/3a’ . . ~1. While considering an aqueous

slowest

solution FeCls (v, ~24 cm®/mol and v_.. ~—44 cm®/mol, [59]), we obtain the following

rough estimation [AZ*|>0.2 c(mol /1) For concentrations of about 5 mol /I, which is close to

solubility limit,

When the electric current is passed through the membrane at zero concentration
difference, one can see that the third term of the right hand side of Eq.(39) can be greater by
magnitude than the first one. Such a situation definitely takes place when the ion fluxes are of
migration origin and thus are directed oppositely. Both these terms describe the contribution of
ions to the volume flow. Hence, the contribution of ions into the volume flow during
electroosmosis can change the normalized value of the measured zeta potential within the
estimated range 0.2-1. Note that it is of order or even more than the zeta-potentials attributed to

the solvent transfer at such high concentrations.
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5. Coupling between the transmembrane fluxes of different nature

Now, we will focus on a wide class of membrane transport phenomena listed in Section
1.3 for which imposing a transmembrane flux of one physical nature results in generating
transmembrane fluxes of other natures. Such a coupling between the fluxes is defined by
membrane properties that are described by a set of phenomenological coefficients. In the present
section, we will give the definitions of these coefficients on the basis of different thought
experiments. The definitions to be proposed will be based on conservation laws and linearity
reasons and thus will not use the Onsager theorem.

For introducing the abovementioned kinematic coefficients we subdivide all the
membrane cross-effects in three groups that, as discussed in Section 1.1