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Derivation of transport equations. 
In the system of coordinates fixed to the membrane matrix, we consider the local flux of an ion 
as a linear combination of electro-diffusion1 (movement relative to the center of mass) and 
advection (movement with the center of mass). 

𝚥𝚥𝑖𝑖 = − 𝐷𝐷𝑖𝑖
𝑅𝑅𝑅𝑅
𝑐𝑐𝑖̅𝑖∇𝜇̅𝜇𝑖𝑖

(𝑒𝑒) + 𝑐𝑐𝑖̅𝑖𝑣⃗𝑣         (S1) 

where 𝚥𝚥𝑖𝑖 is the local flux of ion “i”, 𝐷𝐷𝑖𝑖 is the ion diffusion coefficient, 𝑅𝑅 is the universal gas 
constant, 𝑇𝑇 is the absolute temperature, 𝑐𝑐𝑖̅𝑖 is the local ion concentration, 𝜇̅𝜇𝑖𝑖

(𝑒𝑒) is the ion 
electrochemical potential, 𝑣⃗𝑣 is the local fluid velocity. 

The fluid movement can be a combination of pressure-driven flow and (electro)osmosis and is 
controlled by external perturbations (for example, a hydrostatic pressure difference) as well as 
by ion distribution inside pores. Within the scope of standard space-charge model used in this 
study, the flow dynamics is described by Stokes equation including a body force, 𝑓𝑓, arising due 
to space charges near pore surfaces and induced transmembrane electric fields. 

𝜂𝜂∇2𝑣⃗𝑣 = ∇𝑝̅𝑝 − 𝑓𝑓          (S2) 

where  𝜂𝜂 is the dynamic viscosity, 𝑝̅𝑝 is the hydrostatic pressure inside the pore. This body force 
is equal to the negative gradient of electrostatic potential times local electric space-charge 
density, which can be expressed through local ion concentrations 

𝑓𝑓 = −𝐹𝐹∇𝜑𝜑� ∑ 𝑍𝑍𝑖𝑖𝑐𝑐𝑖̅𝑖𝑖𝑖           (S3) 

where the summation extends over all the ions. By using this definition of electrochemical 
potential 

∇𝜇̅𝜇𝑖𝑖
(𝑒𝑒) ≡ ∇𝜇̅𝜇𝑖𝑖

(𝑐𝑐) + 𝐹𝐹𝑍𝑍𝑖𝑖𝜑𝜑�           (S4) 

we can express the gradient of electrostatic potential via gradients of electrochemical and 
chemical potentials to obtain for the body force 

                                                           
1 Although no external voltage is applied in this study, there are spontaneously-arising electric fields 
inside the membrane nanopores. 
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𝑓𝑓 = −∑ 𝑐𝑐𝑖̅𝑖 �∇𝜇̅𝜇𝑖𝑖
(𝑒𝑒) − ∇𝜇̅𝜇𝑖𝑖

(𝑐𝑐)� ≡ −∑ 𝑐𝑐𝑖̅𝑖∇𝜇̅𝜇𝑖𝑖
(𝑒𝑒) + ∇Π�𝑖𝑖𝑖𝑖       (S5) 

where Π� ≡ ∑ 𝑐𝑐𝑖̅𝑖𝜇̅𝜇𝑖𝑖
(𝑐𝑐)

𝑖𝑖  is the local osmotic pressure inside pores. Consequently, Stokes equation 
Eq(S2) can be transformed this way 

𝜂𝜂𝛻𝛻2𝑣⃗𝑣 = ∇(𝑝̅𝑝 − Π�) + ∑ 𝑐𝑐𝑖̅𝑖∇𝜇̅𝜇𝑖𝑖
(𝑒𝑒)

𝑖𝑖         (S6) 

The first term is proportional to the negative gradient of solvent chemical potential defined as 

𝜇̅𝜇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≡ 𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠(𝑝̅𝑝 − Π�)          (S7) 

where 𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠 is the partial molar volume of solvent. Eq(S6) is convenient for a local-equilibrium 
analysis because the gradients of (electro)chemical potentials can be considered to be the 
same as in a virtual bulk electrolyte solution that could be in thermodynamic equilibrium with 
a given cross-section inside a pore. Assuming that the pores are sufficiently small, these 
gradients are independent of the position inside the pore. The gradient of chemical potential 
of solvent in the virtual solution is also the same as in the pore. Additionally, in this study we 
assume that the partial molar volume of solvent in the pores is the same as in the virtual 
solution (no changes in the solvent properties in nanopores), so its partitioning coefficient is 
equal to one, and 

∇(𝑝̅𝑝 − Π�) = ∇(𝑝𝑝 − Π)          (S8) 

where the properties without bar correspond to the virtual solution. The local ion 
concentrations inside pores can be related to the concentrations in the virtual solution, 𝑐𝑐𝑖𝑖, via 
ion partitioning coefficients, Γ𝑖𝑖, 

𝑐𝑐𝑖̅𝑖 = 𝑐𝑐𝑖𝑖Γ𝑖𝑖            (S9) 

Thus, the Stokes equation can be written down in this form where its right-hand side contains 
only gradients in the virtual solution. 

𝜂𝜂𝛻𝛻2𝑣⃗𝑣 = ∇(𝑝𝑝 − Π) + ∑ Γ𝑖𝑖𝑐𝑐𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∇𝜇𝜇𝑖𝑖

(𝑒𝑒)        (S10) 

Following 1 we introduce a linear functional operator, 𝐹𝐹�[ ] giving a solution to this equation 

𝜂𝜂𝛻𝛻2𝑣⃗𝑣 = −𝑔⃗𝑔           (S11) 

where 𝑔⃗𝑔 is an arbitrary function of coordinate inside the pore. Given that neither the gradients 
nor the ion concentrations in the virtual solution depend on this coordinate, they can be taken 
out of the operator sign, so 

𝑣⃗𝑣 = −𝐹𝐹�[1] ∙ 𝛻𝛻(𝑝𝑝 − Π) − ∑ 𝐹𝐹�[𝛤𝛤𝑖𝑖] ∙ 𝑐𝑐𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∙ 𝛻𝛻𝜇𝜇𝑖𝑖

(𝑒𝑒)       (S12) 

The form of operator 𝐹𝐹�[ ] depends on the pore geometry. In this study, in agreement with 
the experimental part using track-etched membranes, we will further consider long straight 
cylindrical pores of equal size. In this case, all the flows are 1D, so we will further drop the 
vector signs. Besides, the ion distribution coefficients, 𝛤𝛤𝑖𝑖, depend only on the radial coordinate 
inside the pore. The operator can be shown to have this form 2 

𝐹𝐹�[Γ𝑖𝑖] = −𝑟𝑟𝑝𝑝2

𝜂𝜂
�𝑙𝑙𝑙𝑙(𝜌𝜌)∫ 𝑑𝑑𝑑𝑑´𝜌𝜌´𝜌𝜌

0 Γ𝑖𝑖(𝜌𝜌´) + ∫ 𝑑𝑑𝑑𝑑´𝜌𝜌´𝑙𝑙𝑙𝑙(𝜌𝜌´)1
𝜌𝜌 Γ𝑖𝑖(𝜌𝜌´)�     (S13) 
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where 𝑟𝑟𝑝𝑝 is the pore radius, 𝜌𝜌 ≡ 𝑟𝑟 𝑟𝑟𝑝𝑝⁄  is the dimensionless radial coordinate. For a given ion 
(after multiplication by the negative gradient of the corresponding electrochemical potential), 
this gives the “iono-osmotic” velocity profile. For the solvent (Γ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1), we obtain the well-
known parabolic profile 

𝐹𝐹�[1] = 𝑟𝑟𝑝𝑝2

4𝜂𝜂
(1 − 𝜌𝜌2)          (S14) 

To obtain observable ion fluxes, we should substitute Eq(S12) into Eq(S1) (applying the concept 
of local equilibrium to the first term and to the ion concentrations in the second) and average 
over the pore cross-section. As a result, for solutions of single salts (two ions), we obtain 

−𝐽𝐽1 = 𝑐𝑐1 ∙ �〈Γ1𝐹𝐹�[1]〉∇𝑝𝑝 + 𝑐𝑐1〈Γ1𝐹𝐹�[Γ1 − 1]〉∇𝜇𝜇1
(𝑒𝑒) + 𝑐𝑐2〈Γ1𝐹𝐹�[Γ2 − 1]〉∇𝜇𝜇2

(𝑒𝑒) + 〈𝐷𝐷1Γ1〉
𝑅𝑅𝑅𝑅

∇𝜇𝜇1
(𝑒𝑒)� (S15) 

−𝐽𝐽2 = 𝑐𝑐2 ∙ �〈Γ2𝐹𝐹�[1]〉∇𝑝𝑝 + 𝑐𝑐2〈Γ2𝐹𝐹�[Γ2 − 1]〉∇𝜇𝜇2
(𝑒𝑒) + 𝑐𝑐1〈Γ2𝐹𝐹�[Γ1 − 1]〉∇𝜇𝜇1

(𝑒𝑒) + 〈𝐷𝐷2Γ2〉
𝑅𝑅𝑅𝑅

∇𝜇𝜇2
(𝑒𝑒)� (S16) 

where 𝐽𝐽𝑖𝑖 ≡ 〈𝑗𝑗𝑖𝑖〉, the brackets, 〈 〉, mean averaging over the pore cross-section, that is 
integration over the radial coordinate times 2𝜋𝜋, and scaling on the area of pore cross-section. 
The solvent flux (considered to be equal to the volume flux in the approximation of dilute 
solutions) is obtained via averaging of Eq(S12). 

−𝐽𝐽𝑣𝑣 = 〈𝐹𝐹�[1]〉∇𝑝𝑝 + 𝑐𝑐1〈𝐹𝐹�[Γ1 − 1]〉∇𝜇𝜇1
(𝑒𝑒) + 𝑐𝑐2〈𝐹𝐹�[Γ2 − 1]〉∇𝜇𝜇2

(𝑒𝑒)     (S17) 

For the cylindrical capillary model, 

〈Γ𝑖𝑖𝐹𝐹�Γ𝑗𝑗�〉 ≡ − 2𝑟𝑟𝑝𝑝2

𝜂𝜂 ∫ 𝑑𝑑𝑑𝑑𝑑𝑑Γ𝑖𝑖(𝜌𝜌) �𝑙𝑙𝑙𝑙(𝜌𝜌)∫ 𝑑𝑑𝑑𝑑´𝜌𝜌´𝜌𝜌
0 𝛤𝛤𝑗𝑗(𝜌𝜌´) + ∫ 𝑑𝑑𝑑𝑑´𝜌𝜌´𝑙𝑙𝑙𝑙(𝜌𝜌´)1

𝜌𝜌 𝛤𝛤𝑗𝑗(𝜌𝜌´)�1
0    (S18) 

Now, we will transform Eqs(S15,S16) to have electric-current density and transmembrane 
volume flow singled out explicitly. This will enable us to define membrane transport processes 
(in particular, salt diffusion flux) at zero current and volume flow as occurs in the 
measurements of osmotic pressure. For this, we express the gradient of virtual hydrostatic 
pressure via the volume flux and gradients of electrochemical potentials by using Eq(19) and 
substitute to Eqs(S15,S16). After some identical transformation, we obtain 

𝐽𝐽1 = −𝑐𝑐1 ∙ �
1
𝑅𝑅𝑅𝑅
�𝑃𝑃1∇𝜇𝜇1

(𝑒𝑒) + 𝜔𝜔
𝜈𝜈1
∇𝜇𝜇2

(𝑒𝑒)� − 𝐽𝐽𝑣𝑣𝜏𝜏1�       (S19) 

𝐽𝐽2 = −𝑐𝑐2 ∙ �
1
𝑅𝑅𝑅𝑅
�𝑃𝑃2∇𝜇𝜇2

(𝑒𝑒) + 𝜔𝜔
𝜈𝜈2
∇𝜇𝜇1

(𝑒𝑒)� − 𝐽𝐽𝑣𝑣𝜏𝜏2�       (S20) 

∇𝑝𝑝 = − 𝐽𝐽𝑣𝑣
〈𝐹𝐹[1]〉 + 𝑐𝑐1(1 − 𝜏𝜏1)∇𝜇𝜇1

(𝑒𝑒) + 𝑐𝑐2(1− 𝜏𝜏2)∇𝜇𝜇2
(𝑒𝑒)      (S21) 

where we have denoted 

𝑃𝑃𝑖𝑖 ≡ 〈𝐷𝐷𝑖𝑖Γ𝑖𝑖〉 + 𝑅𝑅𝑅𝑅𝑐𝑐𝑖𝑖〈𝐹𝐹[1]〉 �〈Γ𝑖𝑖𝐹𝐹[Γ𝑖𝑖]〉
〈𝐹𝐹[1]〉 − 𝜏𝜏𝑖𝑖2�       (S22) 

𝜔𝜔 ≡ 𝑅𝑅𝑅𝑅𝜈𝜈1𝜈𝜈2𝑐𝑐〈𝐹𝐹[1]〉 ∙ �〈Γ1𝐹𝐹[Γ2]〉
〈𝐹𝐹[1]〉 − 𝜏𝜏1𝜏𝜏2�       (S23) 

𝜏𝜏𝑖𝑖 ≡
〈Γ𝑖𝑖𝐹𝐹[1]〉
〈𝐹𝐹[1]〉            (S24) 

𝑐𝑐 is the electrolyte concentration, 𝑐𝑐𝑖𝑖 ≡ 𝜈𝜈𝑖𝑖𝑐𝑐, 𝜈𝜈𝑖𝑖 are ion stoichiometric coefficients, they satisfy 
electroneutrality condition, 𝑍𝑍1𝜈𝜈1 + 𝑍𝑍2𝜈𝜈2 = 0. The ion transmission coefficients, 𝜏𝜏𝑖𝑖, quantify 
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the extent to which ions are convectively entrained by the volume flow2. Notably, they are 
larger than one for counterions whose partitioning coefficients exceed unity. In principle, these 
coefficients can be affected by steric hindrance3 but this is not significant in nanopores whose 
size is much larger than the ion size (the focus of this study). Based on the same 
considerations, we also neglect the effect of steric hindrance on the ion diffusion and consider 
ion diffusion coefficients in nanopores constant and equal to those in bulk electrolyte solution. 

Electrochemical potentials of ions are difficult to control. Therefore, it is convenient to 
transform Eqs(S19-S21) in a form containing more manageable quantities such as electrostatic-
potential and salt-concentration gradients as well as electric-current density and salt flux. The 
electric-current density is defined this way 

𝐼𝐼 ≡ 𝑍𝑍1𝐽𝐽1 + 𝑍𝑍2𝐽𝐽2          (S25) 

The definition of salt flux is less trivial because at non-zero electric currents changes in the salt 
concentration in reservoirs separated by a membrane are affected by the ion generation or 
consumption at electrodes (or by ion fluxes through other membranes like in electrodialysis). 
In our particular experimental conditions, the electric-current density is zero, so this issue does 
not arise. We use this symmetrical definition of salt flux 

𝐽𝐽𝑠𝑠 ≡
1
2

(𝐽𝐽1 𝜈𝜈1⁄ + 𝐽𝐽2 𝜈𝜈2⁄ )          (S26) 

This expression for the gradients of electrochemical potential3 

𝛻𝛻𝜇𝜇1,2
(𝑒𝑒) ≡ 𝑅𝑅𝑅𝑅 ∇𝑐𝑐

𝑐𝑐
+ 𝐹𝐹𝑍𝑍1,2∇𝜑𝜑         (S27) 

is substituted to Eqs(S19-S21) and ion fluxes are expressed via current density and salt flux. 
After some identical transformations, we obtain: 

𝐽𝐽𝑣𝑣 �
1
𝜒𝜒

+ 𝜌𝜌𝑒𝑒𝑒𝑒
2

𝑔𝑔
� = −∇𝑝𝑝 + 𝜌𝜌𝑒𝑒𝑒𝑒

𝑔𝑔
𝐼𝐼 + 𝑅𝑅𝑅𝑅(𝜈𝜈1 + 𝜈𝜈2)(1 − Τ𝑠𝑠) ∙ ∇𝑐𝑐     (S28) 

𝐽𝐽𝑠𝑠 = −𝑃𝑃𝑠𝑠∇𝑐𝑐 + 𝐼𝐼∙(𝑡𝑡1−𝑡𝑡2)
2𝐹𝐹(𝑍𝑍1𝜈𝜈1) + 𝐽𝐽𝑣𝑣𝑐𝑐Τ𝑠𝑠         (S29) 

−∇𝜑𝜑 = 𝐼𝐼−𝜌𝜌𝑒𝑒𝑒𝑒∙𝐽𝐽𝑣𝑣
𝑔𝑔

+ 𝑅𝑅𝑅𝑅
𝐹𝐹
�𝑡𝑡1
𝑍𝑍1

+ 𝑡𝑡2
𝑍𝑍2
� ∇𝑐𝑐
𝑐𝑐

        (S30) 

𝜒𝜒 ≡ 〈𝐹𝐹[1]〉 = 𝑟𝑟𝑝𝑝2

8𝜂𝜂
          (S31) 

𝜒𝜒 is the hydraulic permeability at zero voltage gradient. Eq(S28) shows that the more easily 
measurable hydraulic permeability at zero electric current is equal to 

𝜒𝜒∗ ≡
𝜒𝜒

1+𝜒𝜒∙
𝜌𝜌𝑒𝑒𝑒𝑒
2

𝑔𝑔

           (S32) 

𝜌𝜌𝑒𝑒𝑒𝑒 ≡ 𝐹𝐹(𝑍𝑍1𝜈𝜈1) ∙ 𝑐𝑐 ∙ (𝜏𝜏1 − 𝜏𝜏2)         (S33) 

is the electrokinetic charge density (the proportionality coefficient between electric-current 
density and volume flux under streaming-current conditions, i.e. ∇𝑐𝑐 = 0,∇𝜑𝜑 = 0) 

                                                           
2 It is important to note that the ion convective flux in the pore is scaled on the ion concentration in the 
virtual solution. 
3 From now on, we assume the solution to be ideal. 
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𝑔𝑔 ≡ 𝐹𝐹2

𝑅𝑅𝑅𝑅
(𝑍𝑍1𝜈𝜈1)𝑐𝑐 �𝑍𝑍1 �𝑃𝑃1 −

𝜔𝜔
𝜈𝜈2
� − 𝑍𝑍2 �𝑃𝑃2 −

𝜔𝜔
𝜈𝜈1
��       (S34) 

is the electric conductivity at zero transmembrane volume flow, 

𝑃𝑃𝑠𝑠 ≡
(𝑍𝑍1−𝑍𝑍2)�𝑃𝑃1𝑃𝑃2−

𝜔𝜔2

𝜈𝜈1𝜈𝜈2
�

𝑍𝑍1�𝑃𝑃1−
𝜔𝜔
𝜈𝜈2
�−𝑍𝑍2�𝑃𝑃2−

𝜔𝜔
𝜈𝜈1
�
         (S35) 

is the salt diffusion permeability at zero transmembrane volume flow, 

Τ𝑠𝑠 ≡ 𝜏𝜏1𝑡𝑡2 + 𝜏𝜏2𝑡𝑡1          (S36) 

is the salt transmission coefficient (one minus salt reflection coefficient), 

𝑡𝑡1 ≡
𝑍𝑍1�𝑃𝑃1−

𝜔𝜔
𝜈𝜈2
�

𝑍𝑍1�𝑃𝑃1−
𝜔𝜔
𝜈𝜈2
�−𝑍𝑍2�𝑃𝑃2−

𝜔𝜔
𝜈𝜈1
�
         (S37) 

is the transport number of ion “1” at zero transmembrane volume flow. 

𝑡𝑡2 ≡ 1 − 𝑡𝑡1           (S38) 

by definition. The coefficients in Eqs(S28-S37) are given by Eqs(S22-S24). By putting 𝐼𝐼 = 0 from 
Eqs(S28, S29), we obtain the starting Eqs(1,2) of the main text. 

Numerical procedures 
Non-linearized Poisson-Boltzmann equation was solved numerically by using 6th-order Runge-
Kutta routine. Electrostatic potential on the capillary axis was iterated until the boundary 
condition for the potential derivative at the capillary wall (Eq(16)) was satisfied. The integrals 
from Eqs(8-10,12) were calculated numerically by using the method of trapezoids. The overall 
numerical error was less than 0.1%. Numerical procedures were implemented using Delphi 
2017.01 software. 

Contribution of volume transfer to salt diffusion 
In experiments, salt diffusion permeability was estimated from the rate of change of salt 
concentration difference between the source and the receiving compartments. In our 
experiments, the relative concentration-difference changes were rather small (mostly because 
the measurements were performed at relatively small concentration differences, so the 
receiving concentration could not be very low and rather small relatively changes in the 
concentration had to be detected), so the accuracy of salt-flux estimates is not very high. 
Accordingly, it is difficult to differentiate between the rate of salt flux occurring at initial stages 
of experiment (where the osmotic flow is still non-zero, see Fig.1a) and at the later stages 
where the salt diffusion occurs at practically zero transmembrane volume flow. Nonetheless, 
the theoretical model developed above affords estimates of the possible contribution of 
volume transfer to salt diffusion (and demonstration that it is moderate, see below). While 
defining the diffusion permeability at non-zero volume flow we should account for the 
concentration changes due to solvent transfer from the receiving compartment. This means 
that we should consider the so-called salt chemical flux defined as 

𝐽𝐽𝑠𝑠
(𝑐𝑐ℎ) ≡ 𝐽𝐽𝑠𝑠 − 𝑐𝑐𝐽𝐽𝑣𝑣          (S39) 

and quantifying the rate of salt-concentration changes in the compartment receiving salt flux. 
In our experiments, the contribution of volume transfer to the salt diffusion is largest at the 
early stages where the transmembrane pressure difference is still very low, so for 
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overestimates we can assume it to be equal to zero. By putting ∇𝑝𝑝 = 0, 𝐼𝐼 = 0 in Eq(S28) and 
by substituting the resulting expression for the osmotic volume flux to Eqs(S29, S39), we 
obtain 

𝐽𝐽𝑠𝑠
(𝑐𝑐ℎ) = −[𝑃𝑃𝑠𝑠 + 𝑅𝑅𝑅𝑅𝑅𝑅(𝜈𝜈1 + 𝜈𝜈2)𝜒𝜒∗𝜎𝜎𝑠𝑠2]∇𝑐𝑐        (S40) 

Accordingly, the “initial” salt diffusion permeability (at zero hydrostatic-pressure difference) is 
related to the “zero-flow” permeability this way. 

𝑃𝑃𝑠𝑠|∆𝑃𝑃=0 = 𝑃𝑃𝑠𝑠|𝐽𝐽𝑣𝑣=0 + 𝑅𝑅𝑅𝑅(𝜈𝜈1 + 𝜈𝜈2)𝑐𝑐𝜒𝜒∗𝜎𝜎𝑠𝑠2       (S41) 

Since all the factors in the second term in the right-hand side of Eq(48) are positive, due to 
volume transfer, salt diffusion permeability always increases. 

At non-zero transmembrane volume flows, the increased rate of salt-concentration changes in 
the salt-receiving compartment is due to the (partial) salt rejection accompanying the osmotic 
flow leaving this compartment. Since both the rate of osmosis and the salt rejection are 
proportional to the salt reflection coefficient, the correction is quadratic in it. As we can see 
from Eq(S41), the osmotic correction to the membrane diffusion permeability can be expected 
to be noticeable just for the investigated “intermediate” nanoporous charged membranes 
because such membranes can have relatively large hydraulic permeabilities along with not too 
small salt reflection coefficients at not too low salt concentrations. True, the effect is still 
limited because “large” salt-reflection coefficients (𝜎𝜎𝑠𝑠 ≈ 1) occur only in quite dilute solutions 
(note the proportionality of the correction to the virtual salt concentration). Fig.S1 shows the 
results of some calculations of this correction for parameter combinations corresponding to 
the membranes and conditions described in the experimental section. The values of surface-
charge density are close to those fitted to the experimental data. 

a) b) 

Fig.S1. Relative correction to salt permeability due to volume transfer (theoretical) 

In very dilute solutions and at larger surface-charge densities, the correction is significant 
(especially, in the case of KCl). However, in the investigated membranes the surface-charge 
density noticeably decreases with the salt concentration (see the main text). Thus for instance, 
at average KCl concentration of 1.5 mM the surface-charge density is about -5.7 mC/m2. 
Fig.S1a) shows that the relative osmotic correction in this case is below 10%. At the higher 
average concentration of 3 mM KCl, the fitted surface-charge density is about -9.5 mC/m2. In 
this case, the correction is around 15%. For LiCl, the corrections are smaller. We should also 
keep in mind that Fig.S1 shows the largest corrections occurring at strictly vanishing 
hydrostatic-pressure difference while in our experiments this condition is fulfilled only at very 
early stages, while the system progressively approaches the mode of zero volume flow with 
time. Given the relatively low accuracy of determination of rate of change of salt concentration 
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(see above) we will neglect this relatively small correction and use the zero-flow diffusion 
permeability (Eq(37)) for the fitting of experimental data. 

Hydraulic permeability and pore size 
For the interpretation of osmotic pressure and diffusion permeance in terms of capillary space-
charge model, we need to know the pore size. Given that the membranes have identical 
straight cylindrical pores this seems to be easy to obtain from the membrane hydraulic 
permeability by using Hagen-Poiseuille equation. Keeping in mind the salt-concentration 
dependence of hydraulic permeability (due to the so-called electro-viscosity, see Eq(S28)) at 
first glance it appears logical to make this measurement using electrolyte solutions of 
concentrations corresponding to those employed in the other measurements. However, this 
seemingly simple measurement is actually non-trivial in interpretation primarily due to a salt 
rejection and the corresponding buildup of osmotic-pressure difference. In terms of trans-
membrane volume flow vs applied hydrostatic pressure, this leads to a characteristic 
dependence having an initial and a subsequent linear parts, the extension of the latter crossing 
the pressure axis at a non-zero positive pressure (see, for example, Fig.2 of ref.3). 
Determination of the genuine hydraulic permeance requires reaching well into this second 
linear part (to be able to determine its slope). For solutions of concentrations used in the 
principal measurements (1-4 mM), the corresponding pressures cannot be reached in our 
setup. Besides, such interpretation requires a careful control of stirring conditions, which is 
also not feasible in stirred test cells. Therefore, for the measurements of hydraulic 
permeability, we opted for the use of pure water. True, the contribution of electro-viscosity 
correction in this case can be different from solutions of finite electrolyte concentrations. 
However, given the strong (fourth-power) dependence of hydraulic permeability on the pore 
size and the limited magnitude of electro-viscous phenomenon (max. ca.25% in KCl and ca.40% 
in LiCl solutions1) the associated error in the determination of the pore size can only be 
moderate. Besides, below we will see that surface-charge density in the investigated 
membranes noticeably decreases with electrolyte concentration. If we extrapolate this trend 
to very dilute solutions, the electro-viscosity correction (controlled in very dilute solutions by 
the surface-charge density1) can be expected to be negligible, and the especially simple 
Eq(S31) to be applicable for the determination of pore size. 

Membrane irradiation and etching procedures 
The angle distribution of pore orientation with respect to the membrane surface originates 
from the irradiation mode illustrated by Fig.S2. The film circumflexes a horizontal cylindrical 
shaft 4 cm in radius. The ion beam, homogeneously spread in both vertical and horizontal 
directions, impinges the film through a window 4 cm high. With such geometry, all orientations 
within the angle range from -30 to +30 degrees are equally likely. 

Due to the pore “non-perpendicularity” the pore crossing occurred only at some punctual 
positions along the pore length. Such events give rise to some deviations from the model 
geometry but the most important parameter, namely, the pore size is only slightly affected. An 
alternative scenario of track-etched membrane with parallel pores would be a much worse 
model system. The pores in TEMs are distributed over the surface stochastically. Some of the 
pores form double, triple and so on clusters. Several clusters are seen in Fig. 1 (right). When 
the pore channels are parallel, each cluster is a channel with a larger (compared to singles) 
cross-section. The number of such clusters can be calculated4. At a pore density of 8E13 m-2, 
there are plenty of multiples in a sample 2 cm in diameter. The multiples strongly affect the 
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membrane selectivity. The angle distribution of pore axes (± 30 degrees) reduces the number 
of multiples by several orders of magnitude. 

The membranes were produced in the following way. PET film 10 um thick was irradiated with 
1 MeV/u Xe ions, then treated with soft UV radiation to sensitize tracks and etched in 0.5 M 
NaOH at 80°C for 6.2 min. Under such conditions, the track cores etched though for the time 
shorter than 1 min. The rest of time (1-6 min) corresponds to a slow widening of pores. Since 
the total etching time is at least 6 times longer than the breakthrough time, the pore channels 
should be cylindrical. No narrowing of the channels in the middle of the film is seen in the SEM 
images of cross sections of the membrane (Fig. 1, left). 

 

Fig.S2. Schematic of film irradiation 

Experimental setup 

 

Fig.S3 Schematic of experimental setup 
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To avoid leaks of solution in the left-hand compartment we used a magnetic stirrer (even a tiny 
leak affects the results). The right-hand compartment is open and, therefore, it was possible to 
use a “pony mixer”, which is more effective and easier to control. 

Interpretation of diffusion measurements 
The maximum rise of solution level in the measuring capillary in our measurements did not 
exceed ca.35 cm. Given the inner diameter of the capillary equal to 1 mm, the corresponding 
change of volume was about 3 ml, that is ca.1% of the compartment volumes. Therefore, in 
the following, we will neglect the contribution of volume transfer to the changes of solute 
concentrations. In this approximation, from the material balances we can obtain: 

−𝑉𝑉1
𝑑𝑑𝑐𝑐1
𝑑𝑑𝑑𝑑

= 𝑃𝑃 ∙ 𝐴𝐴 ∙ (𝑐𝑐1 − 𝑐𝑐2)         (S42) 

𝑉𝑉2
𝑑𝑑𝑐𝑐2
𝑑𝑑𝑑𝑑

= 𝑃𝑃 ∙ 𝐴𝐴 ∙ (𝑐𝑐1 − 𝑐𝑐2)         (S43) 

𝑉𝑉1𝑐𝑐1 + 𝑉𝑉2𝑐𝑐2 = 𝑄𝑄          (S44) 

where 𝑄𝑄 is a constant total amount of salt, 𝑃𝑃 is the membrane diffusion permeance, 𝐴𝐴 is the 
membrane area, 𝑉𝑉1,𝑉𝑉2 and 𝑐𝑐1, 𝑐𝑐2 are the compartment volumes (assumed to be constant), and 
(time-dependent) solute concentrations in them. By introducing average compartment 
volume, 𝑉𝑉� ≡ 𝑉𝑉1+𝑉𝑉2

2
, and the deviation from the average, ∆𝑉𝑉 ≡ 𝑉𝑉1−𝑉𝑉2

2
, Eqs(S42,S43) can be 

transformed to 

− 𝑑𝑑
𝑑𝑑𝑑𝑑

[𝑉𝑉�(𝑐𝑐1 − 𝑐𝑐2) + ∆𝑉𝑉(𝑐𝑐1 + 𝑐𝑐2)] = 2𝑃𝑃 ∙ 𝐴𝐴 ∙ (𝑐𝑐1 − 𝑐𝑐2)      (S45) 

Eq(S44) can be used to express the time derivative of the sum of concentrations via time 
derivative of their difference, so solving the simple resulting ODE we obtain 

𝑙𝑙𝑙𝑙 �∆𝑐𝑐(𝑡𝑡)
∆𝑐𝑐(0)� = − 2𝑃𝑃𝑃𝑃

𝑉𝑉�−(∆𝑉𝑉 𝑉𝑉�⁄ )2 ∙ 𝑡𝑡         (S46) 

One can see that the correction due to different compartment volumes is quadratic in 
(∆𝑉𝑉 𝑉𝑉�⁄ ), so for our volumes (250 ml and 300 ml) it is about 0.8% and can be neglected. 
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