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Abstract
In surfactant solutions, the bulk hydrodynamic flow couples to
extensional/compressional surface flows due to Marangoni
stresses induced at the interface. With the increasing surfac-
tant concentration, these Marangoni stresses can suppress
the surface flows and lead to non-moving, retarded, surfaces.
We review this phenomenon with special focus on the dynamic
dewetting of a substrate pulled out of a pool of surfactant so-
lution. In this case, the dewetting meniscus surface can be
retarded (fully or partially) because of the appearance of sur-
face tension gradients opposing the flow in the adjacent liquid.
With an increasing flow velocity, the non-uniformity of the
meniscus surface becomes stronger resulting in its separation
on a mobile and an immobile part with a sharp transition be-
tween them. The presence of a non-uniform adsorption layer at
the meniscus surface strongly complicates the dewetting dy-
namics which becomes dependent on the surfactant balance
at the surface.
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Introduction
Surface active substances are omnipresent in the nature
and technological processes [1e5]. These are sub-
stances such as low molecular weight surfactants, poly-
mers, lipids, proteins, and so on. Due to their high
surface activity, they tend to accumulate in interfacial
layers, modifying their properties. Highly surface-active
www.sciencedirect.com
amphiphilic substances, like long-chain fatty acids or
phospholipids, can adsorb at the interfaces in large
amounts even though they are present in negligible
amounts in the bulk of liquids [6e8]. Special proced-
ures are required to purify liquids from surfactants.

Surfactants (in a broad sense d surface active agents)
play an important role in many technological and daily

household processes, such as the generation of foams
and emulsions, deposition of coating films, multiphase
flows, froth flotation, printing, micro- and nano-fluidic
processes, washing and cleaning, and so on.
[1,2,9e13]. In such processes, interfacial adsorption
layers act often under highly dynamic conditions.
Viscous stresses and pressure variations, arising in solu-
tions, influence the interfacial layers and drive them out
of equilibrium. As a consequence, various relaxation
processes can be initiated within the adsorption layers,
such as adsorption or desorption of the molecules,

accompanied by diffusion relaxation, reorientation and
change of conformation of the adsorbed molecules, for-
mation or break up of molecular aggregates and com-
plexes, formation and change of a structure within the
layers, Marangoni flows and others [14e19]. Such
adsorption layers under non-equilibrium conditions
(called also dynamic adsorption layers [20]) are a subject
of numerous experimental and theoretical studies.

Additionally, interfacial adsorption layers themselves
can strongly influence the dynamics of liquid systems.

Surfactants can modify the bulk properties of liquids
(viscosity, density) if they are present in sufficiently
large amounts. But much more important effect is the
modification of the interfacial properties (interfacial
tension, interfacial visco-elasticity) by surfactants, even
if they are present in rather small amounts [21]. Inter-
facial properties are included in normal and tangential
stress boundary conditions. Through the boundary
conditions, surfactants influence the dynamic behavior
of the whole system, if it contains free fluid/liquid in-
terfaces [21e23].

Consequently, there is a coupling between hydrodynamic
processes and physicochemical processes in liquid sys-
tems containing surfactants. Hydrodynamic flows distort
the surfactants distributions within the system and the
interfacial layer properties. This results in the appear-
ance (or modification) of gradients in the surface tension
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2 Wetting and Spreading (2023)
and capillary pressure jumps, i.e. in normal and tangential
forces applied to the liquid at its interfaces, resulting in
changes in the flow pattern. There is a feedback between
the hydrodynamics of the systems and the dynamics of
the surfactant adsorption layers. In many cases, by suf-
ficiently large deviations from the equilibrium, such a
feedback can lead to instabilities of the system, like in
the case of spontaneous surface tension oscillations

[24,25] or meniscus oscillations in Langmuir wetting
processes [26]. Understanding the mechanisms of such
complex processes and describing or modeling them
theoretically is a challenge for fluid dynamics and inter-
facial science because hydrodynamic and physicochem-
ical processes interact in a complex way with each other.

Wetting menisci are another example of systems where
hydrodynamics and physical chemistry are strongly
interconnected. There are two alternative approaches to
describe the wetting/dewetting dynamics of pure liquids.

One of them is based on the analysis of hydrodynamic
energy dissipation within the three-phase contact zone
[27,28]. Another approach focuses on the kinetics of the
molecular processes determining the value of the
microscopic contact angle [29,30]. Several combined
approaches are also proposed [30] (and references
therein). Extensive experimental and theoretical studies
were performed to approve the proposed approaches
[31], but the description of the wetting/dewetting dy-
namics even for pure liquids remains semi-empirical and
not complete [30,32] even though new approaches

combining molecular dynamics simulations and the above
modeling approaches give promising new in-
sights [33e35].

In practical cases, however, one deals mostly not with
simple pure liquids but rather with multi-component
mixtures (solutions), containing very often surface-
active species. Though there were attempts to describe
the wetting dynamics also for the case of surfactant so-
lutions [36e39], the problem remains much less studied
than the case of pure liquids. The main difficulty in the
solution of the problem arises due to the coupling be-

tween the hydrodynamic and physicochemical processes,
as discussed above. The region near the three-phase
contact line is characterized by very strong velocity gra-
dients and significant viscous stresses acting at the fluid/
liquid interface [40]. They disturb the adsorbed surfac-
tant layer at the meniscus surface. It is supposed that
even in the case of pure liquids, the interfacial layers
should be disturbed near the contact line [30,41e44].
This is more the case for surfactant solutions [17].

The properties of dynamic adsorption layers have been

widely studied for other surfactants containing systems,
where also a mutual influence of hydrodynamic flows and
adsorption layers takes a place under the similar condi-
tions. These are such systems like bubbles and drops
rising (falling) or growing in surfactant solutions
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[20,22,45e49], thin liquid films [50e52], capillary
waves [22,53], liquid-infused surfaces [54], and others. A
detailed analysis of such systems was presented recently
in the study by Manikantan and Squires [21]. These
studies are very useful for the analysis of the adsorption
layers behavior under specific dynamic conditions in
wetting. In particular, the studies of bubbles and drops
rising or falling in surfactant solutions point out at a

strongly non-uniform distribution of the surfactants
adsorbed at their interfaces [47,48,55e57]. The result-
ing interfacial tension gradients, opposing the flow in the
adjacent liquid, strongly influence the local velocity
profiles and the terminal velocities of the bubbles and
drops, which become dependent on the surfactant type
and concentration [58e60] (and references therein). In
such systems, the non-uniformity of the surfactant dis-
tribution at the interface reveals itself in the formation of
a fully retarded zone (so-called stagnant cap) at the rear
of the moving bubble or drop [61e64], i.e. a zone in

which the surface tension gradients fully suppress sur-
face flows. A sharp transition between a mobile and fully
retarded zone at the interface is often observed in the
case of impurities collected on the upstream side of an
obstacle, at the leading edge of a spreading oil slick or in
other similar systems [65] (and references therein).

In a stationary state, one should expect that strongly non-
uniform dynamic adsorption layers form also at the sur-
face of wetting/dewetting menisci of surfactant solutions.
The meniscus surface can be retarded (fully or partially)

because of the appearance of surface tension gradients
opposing the flow in the adjacent liquid, i.e. because of
the Marangoni stresses at the surface. There are obser-
vations, which support the hypothesis that Marangoni
stresses close to the contact line can be responsible for
the sharp decrease of dynamic receding contact angles
[17,66]. The calculation of the flow characteristics in the
meniscus becomes much more challenging in the pres-
ence of non-uniform adsorption layers because it requires
to consider the surfactant transfer in the bulk and at the
surface and its adsorption/desorption.

The present paper is aimed to analyze the effect of non-
uniform dynamic adsorption layers on the flow within
steady dewetting menisci. To this end, we combine the
results for the wetting dynamics with those for other
liquid systems where dynamic adsorption layers play a
significant role. Such approach gives a new look at the
problem allowing a deeper understanding of the details
of the processes accompanying the dynamic wetting/
dewetting in surfactant systems and helping in the

modeling of this complicated phenomenon.
Experimental investigations of steady
dewetting processes
The analysis of dynamic adsorption layers at liquid in-
terfaces is much simpler for steady flow conditions,
www.sciencedirect.com
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when the liquid velocity and surfactants distributions do
not change with time. Therefore, we present here the
experimental method of rotating horizontal cylinder
partially immersed in a surfactant solution (Figure 1)
[66e70]. The advantage of this method is the possi-
bility of a continuous observation of advancing or
receding contact angles during a sufficiently long time
after a steady state is established. It allows to study the

forced wetting regimes over a wide range of wetting/
dewetting speeds (10�4 to 1 m/s). Also, the equilibrium
and dynamic contact angles can be controlled by making
the surface of the cylinder more hydrophobic or more
hydrophilic with a controlled roughness, depending on
the conditions of a particular experiment. Accordingly,
the experimental setup is suitable for the studies of the
contact angle hysteresis, which can appear due to sur-
face roughness, chemical heterogeneity of the surface,
as well as due to specific interaction between the sub-
strate surface and the air/water interface in a close vi-

cinity of the triple contact line [31].

Precise dependencies of the dynamic contact angles on
the velocity of the moving surface (or capillary number)
can be obtained with this instrument by analyzing side-
view images taken with a high-speed camera. The ex-
periments can be performed under controlled temper-
ature and humidity conditions. The flow profiles within
the setup can be visualized by adding small amounts of
particles dispersed in the liquid. The particle move-
ment, observed with another high-speed camera, can be

analyzed by using the particle tracking plugin of
ImageJ [66].

In the study byHenrich et al. [66], the dynamic receding
contact angles were measured with the rotating cylinder
setup for several surfactants of different type and solu-
bility. This included anionic (sodium 1-decanesulfonate,
Figure 1

Schematic of the experimental setup: (a) and (b) the side and top views of th
advancing and receding contact lines. Reprinted (adapted) with permission fr
and Colloid Polym Sci 291, 361(Copyright 2012, Springer Verlag) [68].

www.sciencedirect.com
S-1DeS), cationic (cetyltrimethylammonium bromide,
CTAB), and non-ionic surfactants (oxyethylated alcohols
C4E1, C8E3 and C12E5). The results are presented
in Figure 2.

Typical dynamic receding contact angle versus velocity
dependencies are shown in Figure 2a. At velocities larger
than 10 mm/s, the experimental data are in a good

agreement with the hydrodynamic theories by Voinov
[71] and Cox [27] (solid lines) and by Eggers [72] and
Chan et al. [73] (dashed lines), respectively. For lower
velocities, the molecular or the combined
molecularehydrodynamic theory [30,74] is usually more
appropriate. It was suggested recently in the study by
Butt et al. [75] that the low velocity part of the de-
pendencies can be explained by an adaptation (i.e.
relaxation) of the dewetted substrate surface. Such
adaptation should depend on the substrate material
properties and its interaction with the liquid.

The dynamic contact angle versus velocity curves, shown
in Figure 2a, strongly depend on the surfactant con-
centration in the solution. Both the apparent receding
contact angles for zero velocity and the critical velocity,
corresponding to zero contact angles, decrease with the
surfactant concentration increase. In Figure 2b, the
dynamic contact angle versus surfactant concentration
dependencies at a velocity of 6 mm/s are shown. They
also demonstrate the effect of the surfactant type and
concentration on the dynamic contact angle.

The critical micelles concentration (CMC) values for
the considered surfactants span between 7.0$10�2 and
1.2$103 mM, i.e. over more than four orders of magni-
tude [66]. This means that the diffusion kinetics should
be also very different for these surfactants due to the
strongly varying characteristic diffusion distances [17].
e rotating cylinder setup, (c) sketch of the hydrodynamic flow close to the
om Langmuir 27, 2112(Copyright 2011, American Chemical Society) [67]

Current Opinion in Colloid & Interface Science 2023, 67:101723

www.sciencedirect.com/science/journal/13590294


Figure 2

Dynamic receding contact angle of aqueous solutions of S-1DeS versus velocity (a) and dynamic receding contact angles at a velocity of 6 mm s−1 versus
surfactant concentration (in % of CMC)for the surfactants CTAB (cationic), S-1DeS (anionic), and C4E1, C8E3, C12E5 (non-ionic) (b) on a polystyrene-
coated cylinder (adapted from the study by Henrich et al. [66]). The solid and dashed lines in (a) are fits using the hydrodynamic theories as discussed in
the text. The surfactants concentrations (in % of CMC) are shown at the curves (Soft Matter, 2016, 12, 7782- Published by The Royal Society of
Chemistry). CMC, critical micelles concentration.

Figure 3

Rotating cylinder in contact with pure water (a) and a surfactant solution
(b).

4 Wetting and Spreading (2023)
It is remarkable, however, that the effect of the surfac-
tant type on the dynamic contact angle is not so sig-
nificant as it could be expected from the difference in

the CMC values. Moreover, there is no clear correlation
between the CMC values and the effect of the surfac-
tant type on the dynamic contact angle. Thus, though
the diffusion kinetics is important for the dynamic
contact angle variation with the velocity, the effect of
other possible factors should be also considered. One
such factor is the surfactant distribution over the sur-
face, which depends strongly on the velocity distribu-
tion in the solution near the surface and not exclusively
on the adsorption kinetics. In this case, the experi-
mental observations give strong indications that the

effects change when surfactant can be transported over
the liquid surface from the receding contact line to the
advancing contact line [17,68]. In the following, we
consider situations in which the dynamics of each con-
tact line can be dealt independently, i.e. we neglect
effect discussed in the study by Straub et al. [17] and
Fell et al. [68].

Here, two limiting situations should be considered. In
pure water (or a very diluted surfactant solution), the
surface tension practically does not change and the

water surface is mobile. For a receding meniscus, the
water layer at the surface moves away from the
meniscus, driven by the viscous flow produced by the
rotating cylinder in the bulk of water (Figure 3a). The
water surface is continuously expanded in the vicinity of
the contact line. If traces of a surfactant are present at
the surface, they are swept from the meniscus surface
Current Opinion in Colloid & Interface Science 2023, 67:101723
toward the vessel wall. Near the vessel wall, in contrast
to the meniscus, the water surface is continuously
contracted; therefore, the surfactant traces can accu-

mulate here and desorb into the bulk of water.

The situation is completely different in the case of a
surfactant solution, if its concentration is sufficiently
high. The surfactant molecules adsorbed at the surface
can support the surface tension gradients, which
www.sciencedirect.com
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counteract the viscous flow close to the surface. As a
result, at sufficiently high surfactant concentrations, the
solution surface becomes almost completely immobile
(Figure 3b). These two situations are very similar to the
behavior of bubbles rising in surfactant solutions. In
pure water, the bubble surface is free of surfactants and
mobile, and the rising velocity is high, while in surfac-
tant solutions, the surface of bubbles is immobilized by

adsorbed molecules, and the rising velocity becomes
much smaller [58,59].

In intermediate cases, the situation is more complex. If
the solution surface is not completely immobile, the
surfactant molecules adsorbed at the surface are swept
from the meniscus surface toward the vessel wall. The
intensity of convection decreases fast with increasing
distance from the rotating cylinder surface. Therefore,
the adsorption layer is only slightly disturbed by the
flow far away from the meniscus. This means that the

surface tension is not very different from the equilib-
rium one, geq, at the remote parts of the surface. At the
meniscus surface, the adsorbed molecules are swept,
and the surface tension is larger than equilibrium one.
However, it cannot be larger than that for pure water,
g0. Hence, the maximum possible total surface tension
difference over the solution surface is close to the sur-
face pressure,P= g0 - geq, for this particular surfactant
concentration. The higher the surfactant concentration,
the larger is the surface pressure and the stronger are
surface tension gradients, counteracting the viscous

flow at the surface.

The equilibrium surface tension and surface pressure of
different surfactants depend on their adsorption activity.
Usually, they are functions of the dimensionless ratio c/a,
where c is the surfactant concentration and a is the
adsorption equilibrium constant, reflecting its surface
activity (a smaller constant a means a higher surface
activity). The equilibrium constant a increases with the
CMC increase and, for air/water interface, it is usually by
about one order of magnitude smaller than CMC [76].
This means that if the concentrations of two surfactants

in % of CMC are similar, then their ratios c/a should be
also similar. In this case also, the equilibrium surface
tensions and surface pressures of these surfactant solu-
tions should be similar. Accordingly, the surface tension
gradients, counteracting the viscous flow at the surface,
should be not very different for such two solutions at
similar flow velocities. This can be a possible explana-
tion why the results obtained in the study by Henrich
et al. [66] for surfactants with very different CMC
values are not very different (Figure 2b).
Theoretical approaches
Governing equations
The velocity distribution u within the solution can be
obtained from a set of NaviereStokes equations
www.sciencedirect.com
r
vu
vt

þ ru$Vu ¼ �Vpþ mDu (1)

and the continuity equation for an incompressible liquid

Vu ¼ 0 (2)

where p is the pressure, r and m are the density and dy-

namic viscosity of the solution. The surfactant distribution

in the solution volume is described by the convective

diffusion equation

vc

vt
þ u$Vc ¼ DDc (3)

where c and D are the concentration and diffusion coeffi-

cient of the surfactant in solution. The surfaces are

assumed to move parallel to itself, i.e. the normal velocity

components are zero at the surfaces. For the rotating cyl-

inder surface, we will assume here a non-slip bound-

ary condition

u ¼ U (4)

where U is the velocity vector at the cylinder surface. The

non-slip condition is not valid for a small region near the

contact line of the order of distances where typical surface

forces are acting (i.e. below 100 nm) [40]. However, our

consideration here concerns much larger distances, where

Eq. (4) is valid.

The boundary condition for the solution surface repre-
sents the tangential stress balance

vut
vn

¼ �1

m
Vsg (5)

where ut is the tangential velocity component near the

surface, n is the coordinate normal to the surface, g is the

surface tension, and Vs is the surface gradient operator.

If the interfacial layer is under local equilibrium condi-

tions, the local surface tension is a function of adsorption
(surface concentration) G. This function is given by a
specific equation of state for the surfactant g = g(G).
The adsorption G can be obtained from the dynamic
surfactant balance at the surface, which is given by the
equation [21,22].

vG

vt
þVsðGus�DsVsGÞþD

�
vc

vn

�
s

¼ 0 (6)

whereDs is the surface diffusivity of the surfactant and us is
the surface velocity. The second term in Eq. (6) describes

the surfactant redistribution within the interfacial layer

due to surface convection and diffusion. The last term is
Current Opinion in Colloid & Interface Science 2023, 67:101723
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the surfactant flux between the interfacial layer and sub-

surface solution. At the substrate (cylinder) surface, the

adsorbed surfactant moves with the surface and the surface

diffusion can be neglected

vG

vt
þVsðGUÞþD

�
vc

vn

�
s

¼ 0 (7)

Under dynamic conditions, the adsorption G should be
related to the bulk surfactant concentration close to the
surface, cs (subsurface concentration). If a kinetic
adsorption barrier is absent, then local adsorption

equilibrium can be assumed, and the required rela-
tionship is given by the respective adsorption isotherm
equation G= G(cs) for each of the surfaces. If there is an
adsorption barrier, then the respective kinetic adsorp-
tion equation should be applied [20,55e57,60].

To complete the formulation, one has also to include the
conditions at the contact line (or at the border of a small
region near the contact line, excluded from the
consideration) and within the bulk solution far away
from the contact line (or at the vessel walls, if the actual

geometry is considered). The initial conditions are not
necessary, if steady-state regimes are considered. For
this case, the terms with time derivatives disappear from
Eqs. (1), (3), (6), and (7).

It is seen that Eqs. (3) and (5)e(7) set a coupling be-
tween the hydrodynamic and physicochemical variables.
Therefore, in a general case, the hydrodynamic and
convective diffusion equations should be solved
together, what can be a complicated task. We will use
here a simplified approach presuming certain surfactant

distribution for the solution surface.

The dimensionless variables can be introduced as fol-
lows: ~t ¼ U

L t, ~u ¼ u
U , ~p ¼ L

mU p, ~c ¼ c
ceq
, ~G ¼ G

Geq
; ~g ¼

g
RTGN

, where L is the characteristic length (it can be
chosen in different ways), U ¼ jU j is the substrate
velocity, ceq and Geq are the equilibrium surfactant con-
centration and adsorption, and R, T, and GN are the gas
constant, absolute temperature, and limiting adsorption,
respectively. Then the dimensionless form of Eqs.
(1)e(7) will be

Re

�
v~u

v~t
þ ~u $ ~V~u

�
¼ � ~V~pþ ~D~u (8a)

~V~u ¼ 0 (8b)

v~c

v~t
þ ~u$~V~c ¼ 1

Pe
~D~c (8c)
Current Opinion in Colloid & Interface Science 2023, 67:101723
~u ¼ ~U (8d)

v~ut
v~n

¼ �Ma~Vs~g (8e)

v~G

v~t
þ ~Vsð~G~usÞ� 1

Pes
~Ds
~GþNE

Pe

�
v~c

v~n

�
s

¼ 0 (8f)

v~G

v~t
þ ~Vsð~G~UÞþN 0

E

Pe

�
v~c

v~n

�
s

¼ 0 (8g)

In Eqs. (8a)e(8g), the following dimensionless numbers
appear: the Reynolds number Re = rUL/m, the Péclet
and surface Péclet numbers Pe= UL/D and Pes = UL/Ds,
the Marangoni number Ma = RTGN/mU, and the two
numbers NE = ceqL/Geq and N’E = ceqL/Geq, character-
izing the adsorption activity of the surfactant at the
liquid and substrate surface, respectively (sometimes
called “exchange numbers”). The Marangoni number is
defined here in a usual way [55e57,60,62,64].

Solutions for fully mobile and fully retarded air/liquid
interface
Two important limiting cases should be considered first.
They are related to the situations when the air/liquid

interface is either free of surfactants or is fully retarded
by the adsorbed surfactants. In the former case, the
surface tension gradients are absent and the viscous
stresses are zero at the surface, according to Eq. (5). In
the latter case, the surface tension gradients are so high
that the flow velocity at the surface turns to zero. In
these two cases, the solution of the hydrodynamic
problem can be obtained separately from the convective
diffusion problem.

We will consider here liquid flow in a wedge formed by

two flat surfaces, one of which is a solid surface moving
with a constant velocity parallel to itself and another one
is a liquid surface, either free of surfactants and mobile
or motionless due to the presence of surfactants
(Figure 4). The situation with a flat meniscus surface
can be easily realized in the rotating cylinder devise by
filling the liquid in the vessel up to the level, where the
angle formed between the liquid surface and the cyl-
inder surface is equal to the dynamic contact angle for
the given contact line velocity. For the distances from
the contact line much smaller than the cylinder radius,

the cylinder surface can be approximately considered as
locally flat. We consider here a 2D flow structure, which
is realized only for long cylinders in the vertical sym-
metry plain perpendicular to the horizontal cylinder
axis, equidistant from the cylinder bases. With
www.sciencedirect.com
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increasing distance from this plain, the third velocity
component becomes more and more significant.

The velocity distributions for the flow in such wedge
geometry were obtained by Moffatt [77], who has
considered the case of small Reynolds numbers and
solved the Stokes equation, neglecting the left part of
Eq. (1) (or Eq. (8a)).

Then, for the first case of zero viscous stresses at the liquid
surface, the velocity components in the plane polar co-
ordinates (r,q) can be obtained as

ur ¼ U
sin f cosðf� qÞ þ q sin f sinðf� qÞ � f cos q

f� cos f sin f

(9)

uq ¼ U
f sin q� q sin f cosðf� qÞ

f� cos f sin f
(10)

where U ¼ jUj is the velocity of the dewetting solid sur-

face which is inclined in the liquid at the angle f. The
substrate velocity urðr;0Þ ¼ � U, i.e. it is negative when

the substrate leaves the liquid. U has to be replaced by �U
when the substrate moves in the opposite direction.

For the second case of zero velocity at the liquid surface,
the velocity components are the following
ur ¼ U
f sin q� fðf� qÞcos qþ sin f sinðf� qÞ � q sin f cosðf� qÞ

f2 � sin2 f
(11)
uq ¼ U
fðf� qÞsin q� q sin f sinðf� qÞ

f2 � sin2 f
(12)

Eqs. (11) and (12) describe the so-called Taylor scraping
flow [78]. Further developments of this theory can be
found, e.g. in the study by Kuhlmann et al. [79] and
Mahmood et al. [80].

In Eqs. (9)e(12), the polar angle q changes between
0 (at the solid surface) and f (at the liquid surface)
(Figure 4). The radial coordinate r changes in the
theoretical limits from infinitely small to infinitely large

values. For this case, the additional boundary conditions
at the contact line and within the bulk solution far away
from the contact line are not necessary.

We emphasize that in the both solutions, Eqs. (9)e(10)
and (11)-(12), the flow velocity does not depend on the
radial coordinate r, i.e. on the distance to the contact
www.sciencedirect.com
line. This is possible, provided the velocity at both
wedge surfaces do not change with the radial coordinate,
as in the two considered cases. The color diagrams for
the velocity distributions given by Eqs. (9)e(12) are
shown in Figure 4.

From the velocity distributions in Eqs. (9)e(12), the
viscous stresses and pressure distributions can be ob-

tained. In the case of a free solution surface, the viscous
stresses and pressure are the following

Prq ¼ Pqr ¼ 2mU

r
$
sin f sinðf� qÞ
f� sin f cos f

(13)

and

p ¼ p0þ 2mU

r
$
sin f cosðf� qÞ
f� sin f cos f

(14)

For an immobile solution surface, the viscous stresses
and pressure are given by

Prq ¼ Pqr ¼ 2mU

r
$
f cos q� sin f cosðf� qÞ

f2 � sin2 f
(15)
and

p ¼ p0þ 2mU

r
$
f sin qþ sin f sinðf� qÞ

f2 � sin2 f
(16)

where p0 is a constant external pressure.

As can be seen from Eqs. (13)e(16), the viscous stresses
and pressure distributions are inversely proportional to
the distance from the contact line r. This leads to a

singularity at the contact line because both the viscous
stresses and pressure increase without bound here. This
problem is intensively discussed in the related litera-
ture. To avoid the viscous stresses singularity, the non-
slip boundary condition, Eq. (4), should be modified,
when the distance between the substrate and the liquid
surface becomes small d of the order of characteristic
length for surface forces action [27,30,40]. Also, the
pressure increase near the contact line leads to de-
formations of the meniscus surface. Hence, the surface
curvature effect should be accounted for [27,28,37e39].
Current Opinion in Colloid & Interface Science 2023, 67:101723
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Figure 4

Velocity distributions in a plane wedge with one steadily moving and one
free (bottom) or motionless (top) flat surfaces. The velocity distributions
are self-similar for all distances. For definiteness, the overall distance
along the upper surface shown here is 8 mm. The black vertical line marks
the distance 1 mm from the contact line (cf. Figure 5). The inset shows the
polar co-ordinate system (r,q).
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However, such very small distances are not the subject
of the present study; therefore, we do not consider these
effects in details here.

It has been shown by Moffatt that for the velocity dis-
tributions considered here, the Reynolds number should
increase with the distance from the contact line as Rew
rUr/m because the distance r is the only characteristic
length in absence of other characteristic lengths. For
U = 10 cm/s, r = 1 mm, and n = m/r = 10�6 m2/s, this
gives Re w100. Thus, the Reynolds numbers are not
small for the distances of order 1 mm. Nevertheless, the
numerical solutions of the full NaviereStokes equations
showed that they are very close to the Moffatt solutions,

Eqs. (9)e(12), for this particular flow structure
(Figure S2 in Supplementary Information). The difference
between inertial and non-inertial flow behavior in a
wedge was analyzed recently in the study by Mahmood
and Siddiqui [80]. The so-called ‘Reynolds ridge’ often
observed at the transition region of surface-
contaminated liquids is a phenomenon of finite and
large Reynolds numbers. Under Stokes flow conditions,
the air/liquid interface should be considered as a flat
surface [65].
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Surface tension gradients at the immobile part of the
surface
The Moffatt solutions presented above can be used to
analyze the surface tension gradients at the solution
surface immobilized by surfactants. The viscous stresses
are zero at a free solution surface (q = f), according to
Eq. (13), as this was prescribed by the boundary con-
ditions for this case. For an immobile-surface solution,
the viscous stresses are not zero at q = f. For this case,
one obtains from Eqs. (5) and (15)

Prqðr;fÞ ¼ � 2mU

r
$
sin f� f cos f

f2 � sin2 f
¼ dg

dr
(17)

To keep the solution surface immobile, the surface
tension gradient should balance the viscous stresses.

With decreasing distance to the contact line, the surface
tension gradient should increase as the viscous stresses
are increasing. Integrating Eq. (17), one can obtain the
difference of the surface tensions between two arbitrary
points at the surface, r1 and r2, as

Dg ¼ g2 � g1 ¼ 4:6mUFðfÞ$lg r1
r2

(18)

where FðfÞ ¼ sin f�f cos f

f2�sin2 f
is a function, depending on the

dynamic contact angle f. For small contact angles this

function behaves as F(f) w f�1. However, it is of the

order of unity for contact angles between 45� and 75�
(decreases from 1.3 to 0.8 between these two angles) and is

about 2 for a contact angle of 30�.

Eqs. (17) and (18) express the force balance at a flat
meniscus surface for a steady-state dewetting process.
In particular, Eq. (18) shows that, to keep the surface
immobile, the surface tension should decrease with a
constant decrement � 4:6mUFðfÞ, when the distance
to the contact line increases by one order of magnitude.

For a substrate velocity U = 10 cm/s, viscosity
m = 10�3 Pa s and a dynamic contact angle f = 60� the
decrement should be of about �0.46 mN/m, and on a
distance varying by six orders of magnitude (r2/
r1 = 106), the surface tension difference should consist
of about 2.76 mN/m. The dimensionless form of Eq.
(18) is

D~g ¼ ~g2 � ~g1 ¼ 4:6FðfÞ
Ma

$lg
r1
r2

(19)

Thus, the dimensionless surface tension decrement
depends on the Marangoni number as � 4:6FðfÞ=Ma.
The smaller is Marangoni number, i.e. the larger is the
velocity U, the faster is the surface tension decrease.

The decrement increases with decreasing dynamic
contact angle f.
www.sciencedirect.com
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As it was discussed above, in real systems for large dis-
tances from the contact line, the surface tension should
not be very different from the equilibrium one, geq. At
the same time, the surface tension near the contact line
cannot be larger than that for pure solvent, g0. There-
fore, the surface tension difference over the meniscus
surface cannot exceed the value of about P = g0 - geq.
Accordingly, the dynamic adsorption layer can keep the

surface immobile, while the surface tension difference
required to balance the viscous stresses does not exceed
the maximum possible surface tension difference for the
given surfactant concentration in the solution:
Dg � P(c). If the flow velocity increases so, that Dg
exceeds P, then the dynamic adsorption layer is unable
to balance the viscous stresses further and should start
to move away from the contact line. By adding surfactant
to the solution, we can increase the surface pressure P
and restore the force balance at the surface.

It is instructive to compare the flow in a dewetting
meniscus with the flow around bubbles rising in sur-
factant solutions (or drops of heavier liquids falling in
solutions) [47,48,55e64]. The viscous stresses at the
bubble surface produce surface tension gradients
counteracting the flow and reducing the bubble rising
velocity. The higher is the flow velocity, the stronger are
the gradients. However, the surface tension difference
between the bubble top and bottom is limited. The
surface tension at the bubble top cannot be higher than
that for pure solvent, g0. And the surface tension at the

bubble bottom cannot be significantly smaller than the
equilibrium one, geq, because the excess of surfactant
continuously desorbs from the bottom. When the sur-
face tension difference required to balance the viscous
stresses exceeds the maximum possible surface tension
difference, the bubble surface cannot remain immobile
anymore. In such situations the upper part of the bubble
surface becomes mobile, whereas an immobile “stagnant
cap” remains at the lower part [47,48,55e64].

The situation with splitting of the surface of liquid
containing surfactant traces onto mobile and immobile

part due to viscous flow in the bulk is not unique. The
similar situation can be observed, for example, in liquid
films flowing on a solid substrate with impurities
collected on the upstream side of an obstacle, at the
leading edge of a spreading oil film or at liquid-infused
surfaces in the presence of surfactants (see
Refs. [54,65,81] and references therein). For liquid
menisci the possibility of formation of surfactant free
regions under dynamic conditions on the surface of
surfactant containing liquids was considered, in partic-
ular, by Cox [36] and by Chesters et al. [37,38].

The situation in dewetting menisci is rather similar to
bubbles rising in surfactant solutions. The submillime-
ter or millimeter size of rising bubbles is similar to the
typical liquid menisci size. Additionally, the typical
www.sciencedirect.com
bubble rising velocities (from some mm/s to tens of cm/
s) are of the same order of magnitude, as the flow ve-
locities within dewetting menisci. Therefore, one can
expect that also the viscous stresses and surface tension
gradients are of the same order of magnitude for the
considered two situations.

Thus, if the surfactant concentration in solution, c, and
the respective surface pressure, P(c), are sufficiently
small, whereas the flow velocity is high, the surface
tension difference required to balance the viscous
stresses, Dg, can exceed the maximum possible surface
tension difference for this solution concentration,
approximately equal to P(c). In this case, similarly to
the situation with rising bubbles, a part of the meniscus
surface located closer to the contact line can become
mobile. The surfactant molecules can adsorb here, but
due to surface flow, they should be continuously moved
away from the contact line. The surface layer at this

meniscus part is continuously expanded, and the sur-
factant concentration should remain small here.
Therefore, the surface tension should be close to that
for pure solvent, g0, and the viscous stresses should be
close to zero. But further away from the contact line the
surface velocity decreases, and, accordingly, the surface
layer at the respective part of the surface should be
continuously compressed. The surfactant concentration
should be much higher here, than at the mobile part of
the surface, and, therefore, the developed surface ten-
sion gradients opposing the flow can be sufficient to

immobilize this part.

Flow in a plane wedge with partially immobilized
surface
The studies on rising bubbles and falling drops show
that the transition between the mobile and immobile
parts of the surface can be rather sharp
[21,47,48,55e57,61e63,65]. This allows one to use an
idealized, so-called, stagnant cap model, where one part

of the surface is assumed to be completely mobile,
whereas the other part is completely immobile. In this
case, the hydrodynamic problem also can be solved
separately from the convective diffusion problem, as in
the case of Moffatt solution. The presence of surfactants
is revealed only through the dependence of the size of
the immobile part on the surfactant concentration and
adsorption kinetics. To solve the hydrodynamic prob-
lem, one can consider the size of the immobile part as an
additional system parameter.

Such approach gives a solution for the flow in a plane
wedge sufficiently far from the transition region be-
tween the mobile and immobile parts of the surface, but
it ignores the details of the flow and surfactant con-
centration distribution close to the transition region. For
a close vicinity of this region, another solution can be
found which asymptotically matches with the ‘outer’
solution [65]. However, even with this simplification,
Current Opinion in Colloid & Interface Science 2023, 67:101723
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the hydrodynamic problem remains rather complicated
and has no simple analytic solution because the surface
velocity strongly depends on the distance in this case, in
contrast to the Moffatt solution. To avoid mathematical
complicities, it is convenient, similarly to the case of
rising bubbles, to solve the problem numerically.

In Figure 5, one can see the velocity distribution in a

plane wedge, where a part of the surface near the contact
line (r < r0) is completely mobile, whereas the remain-
ing part (r > r0) d completely immobile. The solution
can be obtained under the assumption of zero viscous
stresses at the mobile part and zero surface velocity at
Figure 5

Velocity distribution (a) and flow lines (b) in a plane wedge with one
steadily moving flat surface and one surface composed of a mobile and an
immobile part. The computational domain is limited by flat vertical planes
at the distances 0.5 mm and 8 mm from the contact line. The thin vertical
line marks the border between the mobile and immobile part of the so-
lution surface at the distance 1 mm from the contact line (cf. Figure 4). The
inset in (a) is a zoom of the part closest to the contact line. The inset in (b)
shows the velocity profiles in the vertical cross-section along the thin
vertical line (the solution surface is composed of a mobile and an immo-
bile part (1), is completely mobile (2) or completely immobile (3)).
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the immobile part. The computational domain in this
particular case is limited by flat vertical planes (or also
cylindrically shaped borders) at the distances 0.5 mm and
8 mm from the contact line. For these two borders, the
velocity distributions given by the respective Moffatt
solutions can be used as the boundary conditions, i.e.
Eqs. (9) and (10) for r = 0.5 mm and Eqs. (11) and (12)
for r = 8 mm. The point separating the mobile and

immobile parts (marked by a black vertical line in
Figure 5) is chosen here at the distance r0 = 1 mm from
the contact line. The external borders at the distances
0.5 mm and 8 mm are located sufficiently far from this
point, what allows to use the respective Moffatt solu-
tions there. Figure 5b shows the flow lines in the wedge.

As it is seen from Figure 5, the velocity distributions
sufficiently far left and right from the point separating
the mobile and immobile parts of the surface resemble
those for free and motionless flat surfaces, shown in

Figure 4 (bottom and top, respectively). Close to the
border between the mobile and immobile parts, we have
a transition velocity distribution. Close to the contact
line, the maximum velocity in the liquid flowing back
from the contact line is located at the surface, but with
increasing distance, it moves to the bulk to go around
the retarded part of the surface. The surface velocity is
initially large and almost constant near the contact line,
but it decreases fast when the flow approaches the
leading edge of the retarded part and turns to zero after
this border.

The velocity components in the bulk also sharply
change in the transition region near the border between
the mobile and immobile part at the solution surface.
This leads to a sharp increase of the viscous stresses in
this region, as it is shown in Figure 6a. Such sharp in-
crease of the viscous stresses at the leading edge of a
stagnant cap is also a typical feature of bubbles/drops
rising/falling in surfactant solutions [47,48,55,56]. It is
seen from Figure 6a that the height of the peaks in-
creases with a decreasing distance to the contact line.
But after the peaks, the viscous stresses approach fast

those for a completely retarded surface, given by Eq.
(17), because the respective velocity distributions
become very similar with increasing distance. The
viscous stress peaks presented in Figure 6a are very
sharp as we assumed here a negligibly small transition
region between the mobile and immobile part of the
surface. In a real experimental system, the peaks should
be not so sharp, as soon as there will be a transition
region with a small but finite width, which is deter-
mined by surfactant surface diffusion and adsorption
from the bulk (see below subsection Surfactant balance at
the surface).

When the tangential viscous stress distributions are
known, they can be integrated over the surface, ac-
cording to Eq. (5), and the surface tension distributions
www.sciencedirect.com
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Figure 6

Viscous stresses (a) and surface tension (b) distributions within the
immobile part of the surface for different distances between its leading
edge and the contact line: r0 = 3.0, 1.0, 0.3, and 0.03 mm; the dynamic
contact angle f = 30�; the substrate velocity U = 10 cm/s. Dashed line in
(a) is the viscous stresses distribution at a completely retarded surface
given by Eq. (17). Dashed lines in (b) are the surface tension distributions
calculated by using Eq. (18). The surface tension differences over the
shown distance (8 mm) are given at the respective curves.
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can be obtained. Figure 6b shows the surface tension
distributions for the mobile and immobile parts of the

surface for several positions of the border of the
immobile part with respect to the contact line. Within
the mobile part, the surface tension remains constant
and equal to the surface tension of pure solvent (water
in this case). The surface tension begins to decrease at
the beginning of the immobile part. The closer is the
contact line to the immobile part, the larger is the sur-
face tension difference over the surface, which is
necessary to keep the surface layer immobile. The
dashed lines show the surface tension distributions
calculated by using Eq. (18) for the respective distances

to the contact line. Eq. (18) gives the same logarithmic
www.sciencedirect.com
decrement of the surface tension decrease, as the nu-
merical solution, except of very small distances from the
edge of the immobile part, where the viscous stresses
sharply increase (cf. Figure 6a). Integration of the sharp
viscous stresses peak at the beginning of the immobile
part gives an initial surface tension decrease not
accounted for by Eq. (18); therefore, the numerically
calculated surface tension distributions run slightly

below the respective curves obtained by using Eq. (18).
However, this difference becomes less significant, when
the immobile part begins closer to the contact line.

Thus, to keep the surface layer immobile, a respective
surface tension difference within the surface layer is
necessary. Figure 6b gives the examples of such surface
tension differences over the distance of 8 mm for the
specified parameters of the system. If the required
surface tension difference exceeds the maximum
possible difference for a given surfactant concentration,

then the whole surface layer cannot remain immobile,
and a mobile part appears near the contact line. The size
of the mobile part increases, when the maximum
possible surface tension difference decreases, as it is
illustrated in Figure 6b.

For larger distances than shown in Figure 6b, the surface
tension should continue to decrease with the same
logarithmic decrement, but the respective additional
contribution to the overall surface tension difference
should be small, as the viscous stresses are very small

here. Note also that the wedge geometry considered
here is only a good approximation for the region near the
contact line. For usual experimental conditions, where
the meniscus rises up above a flat part of the solution
surface in the vessel, the contribution of the flat part to
the overall surface tension difference should be negli-
gibly small, because the distance between the solution
surface and the moving substrate surface increases by
orders of magnitude compared to the meniscus region.
Therefore, practically, all surface tension difference
should be created over the meniscus surface only, i.e.
over the distance of the order of capillary length lC ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi

geq=rg
q

, whereas within the flat part of the solution
surface, the surface tension should remain close to the
equilibrium one. For the rotating cylinder, its surface can
be approximately considered as a locally flat, only if the
distance to the contact line is much smaller than the
cylinder radius. Further away from the contact line, the
curvature of the cylinder surface becomes significant.
Therefore, also in this case, the viscous stresses should
decrease much faster with the distance than for a wedge
with two plane surfaces, and practically, all surface
tension difference should be created over the distances

much smaller than the cylinder radius.

For very small (sub-micrometer) distances from the
contact line, the application of the considered simplified
hydrodynamic model is not completely correct, as
Current Opinion in Colloid & Interface Science 2023, 67:101723
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discussed above; therefore, the logarithmic surface
tension decrement should be different here. However,
both the meniscus surface deformation due to local
hydrodynamic pressure increase and the possible slip at
the substrate surface should lead to a decrease of the
viscous stresses at the solution surface compared to the
case of a plane wedge with no-slip boundary condition
for the substrate surface. In this case, the logarithmic

surface tension decrement should also not be signifi-
cantly larger than that given by Eq. (18).

Thus, for not very small dynamic contact angles and not
very viscous solutions, the overall surface tension dif-
ference produced by the viscous stresses within
dewetting menisci should be of the order of several mN/
m. The surface pressure at the solution surface can
change from zero for a pure (or slightly contaminated)
solvent up to several tens of mN/m at high surfactant
concentrations, close to CMC. Thus, for high surfactant

concentrations, the surface pressure can be much larger
than the surface tension difference required to immo-
bilize the surface layer. In this case, the meniscus sur-
face will be completely immobile. However, if the
surfactant concentrations are small (much smaller than
CMC), so that the surface pressure is not sufficiently
large to counteract the tangential viscous stresses at the
surface, then the surfactant will be swept from a part of
the surface.
Lubrication approximation
The analysis can be simplified if we use the lubrication
approximation [82]. This approximation is usually used
to describe velocity profiles between two surfaces,
which have a small slope with respect to each other. It
can be applied to the flow in dewetting menisci, if the
dynamic contact angle f is small. Following this
approach, a simple equation can be obtained estimating
the size of the free part of the meniscus surface (Eq.
(S8) in Supplementary Information):

x0 ¼ lC exp

�
�Pf

2mU

�
(20)

For pure water in the absence of surfactants P = 0, and

this equation gives x0 = lC, i.e. the whole meniscus
surface is mobile. In the presence of a surfactantPs 0,
x0 < lC, and the meniscus surface has a mobile part, for
0 < x < x0, and an immobile part, for x0 < x < lC. The
size of the mobile part, x0, decreases with increasing
surface pressure, i.e. with increasing surfactant con-
centration in the bulk. In contrast, with the increasing
substrate velocity, U, the size of the mobile part in-
creases. The distance x0 increases also with increasing
viscosity and decreasing dynamic contact angle.
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For U = 10 cm/s, f = 0.1, and m = 1 mPa s one obtains
2mU/f z 2 mN/m. Thus, for these particular parame-
ters, an increase of the surface tension difference by
2 mN/m should correspond to a decrease of the mobile
part by a factor of e. It should be noted, however, that the
dynamic contact angle and the capillary length also
depend on surface tension; therefore, the effect of sur-
face tension should be more complicated.

With the dimensionless equilibrium surface pressure
~P ¼ P

RTGN
Eq. (20) takes the form

x0 ¼ lC exp

�
�Ma ~Pf

2

�
(21)

When either Marangoni number or surface pressure ~P
is zero, then there is no tangential stress at the whole
meniscus surface (x0 = lC). With increasing Maran-
goni number and surface pressure the effect of the

surface tension gradient opposing the flow at the
surface becomes stronger, and the size of the mobile
part, x0, decreases. Smaller dynamic contact angle, f,
leads to higher tangential stresses and, therefore, to
larger x0.

With r1 = lC, r2 = r0, and Dg = P Eq. (19) takes a
similar form

r0 ¼ lC exp

�
� Ma ~P

2FðfÞ
�

(22)

Eqs. (21) and (22) show that the size of the mobile part
decreases exponentially with increasing surface pressure
and increasing Marangoni number.

As it was discussed above, the hydrodynamic pressure
within the solution increases with decreasing distance
to the contact line. This pressure increase should lead
to deformations of the surface of liquid. Then the
Laplace pressure compensates the pressure difference
between the liquid and air. According to Eq. (14), near

a mobile surface (q = f), the pressure distribution is
given by

p� p0 ¼ 2mU

r
$

sin f

f� sin f cos f
(23)

The hydrodynamic pressure increase should be equal to
the local capillary pressure pC = g0/RC, where RC is the
curvature radius. Then, it follows from Eq. (23) that the
curvature radius increases with the distance to the
contact line
www.sciencedirect.com
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RC ¼ r

2Ca
$
f� sin f cos f

sin f
(24)

where Ca = mU/g0 is the capillary number. For large dis-

tances, the curvature radius is large and the curvature

effect can be neglected. However, the curvature effect can

be significant at small distances to the contact line. For

U = 10 cm/s, m = 10�3 Pa s, and g0 = 70 mN/m, the

capillary number is about Ca w1.5$10�3. Thus, the cur-

vature radius is large compared to the distance for all dis-

tances, and the capillary pressure is relatively small [40].

Nevertheless, at very small distances the deviations of the

surface of liquid from the horizontal level can be signifi-

cant. However, such small distances are not considered

here. For small and slowly changing slops of the surface, the

solutions obtained by Moffatt, Eqs. (9)e(12), can be used

as approximate solutions with the angle f depending on

the local slop [37,71].

Surfactant balance at the surface
The solution of the hydrodynamic problem presented
above is based on the assumption of a specific surfac-
tant distribution at the meniscus surface, namely, a
separation of the meniscus surface on the mobile and
immobile parts with a sharp transition between them.
On the other side, the surfactant distribution at the
surface should be described by the balance equation,
Eq. (6), or its dimensionless form, Eq. (8f). According
to Eq. (8f), the surfactant distribution is determined by
the dimensionless Péclet numbers Pe and Pes and the

dimensionless number NE. To estimate these numbers,
we have to choose a characteristic length scale L. This
can be, for example, the capillary length lC or, what is
more suitable for the considered here problem, the size
of the surfactant free zone, x0, which can change,
however, in rather wide limits, according to Eq. (26) or
(27). Let us assume, that the characteristic length
scale, L, changes between 1 mm and 1 mm. Then, for
the substrate velocity of about 10 cm/s and the
diffusion coefficient of about 10�10 m2/s, we obtain the
surface Péclet numbers Pes w103 to 106. Thus, the

contribution of surface diffusion to the surfactant
distribution should be small as it is proportional
to (Pes)

�1.

The surfactant adsorption (or desorption) from the bulk
solution is described by the last term in Eq. (8f), which
is inversely proportional to Pe/NE = U(Geq/ceq)/D. The
coefficient Pe/NE has a sense of a Péclet number defined
with the characteristic length scale L’ = Geq/ceq, which
characterizes the adsorption activity of the surfactant
(sometimes it is called “adsorption length”). This
parameter can change in very wide limits, but for typical

surfactants Geq/ceq w10�6 to 10�3 m. Then, for the same
other parameters, we obtain Pe/NE w103 to 106, i.e., it is
in the same range as the surface Péclet number, esti-
mated above. Thus, for the considered conditions,
www.sciencedirect.com
theInfluence of the surfactant exchange with the bulk
solution should be also small.

By neglecting the surface diffusion and surfactant ex-
change with the bulk solution, under steady-state con-
ditions, Eq. (8f) takes the form

~V sð~G~usÞz0 (30)

This means that the surfactant convective flux should
be approximately constant at the surface for the
considered wedge geometry: ~JC ¼ ~G~uszconst. This
constant flux should be equal to the flux of surfactant
molecules desorbed from the substrate (rotating cylin-
der) surface at the contact line, when it leaves the so-
lution. If the surfactant molecules do not desorb from
the substrate surface, then JC z 0, and we have

~G~usz0 (31)

This equation is satisfied, if either G z 0 (for mobile
part of the surface r < r0), or us z 0 (for immobile part
of the surface r0>r) [55,56,61,63]. Such consideration
assumes an infinitely small transition region between
the mobile and immobile parts of the surface, what is

not realized in practice. In real systems the surface
diffusion and surfactant exchange with the bulk solution
make the transition region more diffuse and not
so sharp.

If the surface diffusion is active, then instead of Eq. (30)
we have

~Vsð~G~usÞ� 1

Pes
~Ds
~G ¼ 0 (32)

This equation describes a convective-diffusion problem
with a high Péclet number. In such situations, the
convective solute transfer prevails everywhere in the
system except of a thin boundary layer (transition zone
between the mobile and immobile parts of the surface).

The thickness of such diffusion boundary layer is
inversely proportional to the Péclet number dw (Pes)

�1.
Because of a small boundary layer thickness, the con-
centration gradient in this layer is strong enough to
compensate the convective solute transfer under
steady-state conditions. Note, a small transition layer
thickness is a precondition for the applicability of the
models in the previous sections with a clear separation
between the mobile and immobile parts.

For the transition layer, the longitudinal coordinate in

Eq. (32) can be renormalized by using ds = L$(Pes)
�1 as

a new scaling factor: ~r0 ¼ ~rPes (or ~x
0 ¼ ~xPes). With this
Current Opinion in Colloid & Interface Science 2023, 67:101723
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new dimensionless coordinate, the small multiplier
(Pes)

�1 before the second term in Eq. (32) disappears.
This means that the increase of the dimensionless
adsorption ~G within this thin layer is of the order of unit,
i.e. practically all increase of the adsorption should
happen here, and the remaining part of the mobile zone
at the surface is almost clean of surfactants.

When the surfactant adsorption and desorption are sig-
nificant then we similarly have

~Vsð~G~usÞþNE

Pe

�
v~c

v~n

�
s

¼ 0 (33)

The last term in this equation depends on the surfactant
distribution in the bulk, which is described by a sta-

tionary convective diffusion equation

~u$ ~V ~c � 1

Pe
~D ~c ¼ 0 (34)

In our case, the transversal diffusion near the surface is
much more significant than the longitudinal one;
therefore, we can write

~ux
v~c

v~x
� 1

Pe

v2~c

v~y2
¼ 0 (35)

where ~x and ~y are local Cartesian coordinates. This equation
describes the situation, when a diffusion boundary layer

forms in the solution under the free moving surface. The

thickness of this boundary layer is inversely proportional toffiffiffiffiffi
Pe

p
: dDw1=

ffiffiffiffiffi
Pe

p
[22,60,83]. The transversal coordinate in

Eq. (35) can be also renormalized by using dD ¼ L=
ffiffiffiffiffi
Pe

p
as

a new scaling factor: ~y0 ¼ ~y
ffiffiffiffiffi
Pe

p
. Then, within the thin

boundary layer the two terms in Eq. (35) will have the same

order of magnitude. Thus, the transversal concentration

gradient is determined by the thickness of this boundary

layer, and this should be accounted for in Eq. (33):

v

v~x
ð~G~uxÞþ NEffiffiffiffiffi

Pe
p

�
v~c

v~y0

�
~y
0¼0

¼ 0 (36)

Integration of this equation shows that the dimension-
less convective surfactant flux should be of the order

~JC ¼ ~G~uxw
NEffiffiffiffiffi
Pe

p
Z1

0

�
v~c

v~y0

�
~y¼0

d~x (37)

As the integral in this equation is of the order of unity
(because of the scaling reasons), then the dimensionless
convective flux is of the order of ~JCwNE=

ffiffiffiffiffi
Pe

p
. Hence,
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the convective flux in the mobile part of the surface will
be small, if NE=

ffiffiffiffiffi
Pe

p
« 1. For Lw1 mm, Uw10 cm/s and

D w10�10 m2/s the Péclet number is Pe w106. For less
soluble (but more surface active) surfactants Geq/
ceq w 10�3 m, therefore, the convective flux is small:
NE=

ffiffiffiffiffi
Pe

p
w 10�3. For better soluble (but less surface

active) surfactants, we can have Geq/ceq w 10�6 m
and NE=

ffiffiffiffiffi
Pe

p
w 1.

Thus, the situation with separation of the meniscus
surface onto mobile and immobile part is expected for
less soluble surfactants (having larger Geq/ceq ratios),
because in this case, the convective flux in the mobile
part of the surface should be small, and the amount of
surfactant in this part should be also small. The transi-
tion zone between the mobile and immobile part should
be small, as defined by surface diffusion. The diffusion
and adsorption of perfectly soluble (but low surface
active) surfactants is much faster; therefore, they can

adsorb in sufficiently large amounts in the mobile part,
making it only partially mobile. In this case, the transi-
tion zone between the mobile and immobile part should
be smoother and wider, and the proposed here model
(developed for surfactants with low CMC values) can be
not applicable. If there is a kinetic adsorption barrier,
then the rate of adsorption will be smaller, and the
transition zone between the mobile and immobile part
will be sharper.

The surfactant molecules adsorbed at the mobile part

are continuously swept joining to the surfactant accu-
mulated in the immobile part. Thus, under stationary
conditions, the dynamic adsorption layer in the immo-
bile part should shift slowly out from the contact line.
That means, this layer is not completely immobile. But
for low soluble surfactants, the rate of adsorption is
small, and the shift of the adsorption layer within the
immobile part should be also very slow. In this case,
when solving the hydrodynamic problem, it can be
considered as immobile. For insoluble surfactants, this
should be a rigorous assumption.

However, this assumption can be violated, if a significant
part of surfactant molecules desorb from the substrate at
the contact line. These desorbed molecules are a part of
the convective flux at the mobile part of the surface and
support the slow shift of the dynamic adsorption layer in
the immobile part. Therefore, the difference between
the velocities in the mobile and immobile part can be
significant, if only a small part of the surfactant mole-
cules desorb from the substrate surface while it leaves
the solution, so that the surface concentration in the
mobile part remains much smaller than in the immo-

bile part.

If there is a slow shift of the adsorption layer within the
immobile part, then the excess of surfactant should
desorb far away from the meniscus. Under steady-state
www.sciencedirect.com
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conditions, the amount of the surfactant adsorbed in the
mobile part (or coming to the liquid surface from the
substrate surface) should be equal to the amount
desorbed from the liquid surface in distant parts of the
solution. Therefore, in the immobile part, the surfactant
adsorption should be slightly above the equilibrium
adsorption, and the surface tension should be slightly
below the equilibrium surface tension. This can lead, in

particular, to long-range transport processes (like diffu-
sion and advection) between different regions at the
solution surface in the vessel [68]. However, under
typical experimental conditions, the area of the solution
surface is usually much larger than the meniscus area.
Then the desorption should take a place from a much
larger surface than the surface, where the adsorption
occurs within the meniscus region. Accordingly, the
surface tension in distant parts of the solution should be
only slightly below the equilibrium one to ensure a
sufficiently high desorption flux, as it was discussed at

the beginning.

These considerations show that while the size of the
mobile part is controlled by the equilibrium surface
pressure P = g0 - geq (or the Marangoni number, Eqs.
(25)-(27)), the steepness of the surface tension gradient
within the transition zone between the mobile and
immobile parts is determined by the adsorption activity
of the surfactant and the rate of surface diffusion.

As it was discussed at the beginning, the peculiarities of

the surfactant distribution at the surface should influ-
ence the velocity and viscous stress distributions. In this
respect, it is quite reasonable to assume that the steep-
ness of the surface tension gradient within the transition
zone should have effect on the viscous stress peaks at the
leading edge of the immobile part of the surface. The
viscous stress peaks presented in Figure 6a are very sharp
because they were obtained under the assumption of a
negligibly small transition zone and a very steep surface
tension gradient between the mobile and immobile
parts. The higher are the adsorption activity of the sur-
factant and the rate of surface diffusion, the smoother is

the surface tension gradient within the transition zone,
and the viscous stress peaks should become less sharp.
The same is observed for bubbles rising in surfactant
solutions where the rear part of the bubble is retarded by
the adsorbed surfactant molecules [56].
Conclusions
The liquid velocity profiles in a steady dewetting
meniscus have been analyzed from the hydrodynamic
and convective diffusion points of view by taking into
account possible viscous stresses variations and non-

uniform retardation of the meniscus surface due to the
presence of a dynamic adsorption layer. It has been
shown that the solutions of the hydrodynamic problem
obtained by Moffatt [77] give accurate velocity profiles
www.sciencedirect.com
in the two limiting cases of a completely free or
completely retarded meniscus surface. However, in
surfactant solutions with small concentrations, a non-
uniform retardation of the meniscus surface is ex-
pected, where the available analytical solutions are not
applicable. With increasing flow velocity, the non-
uniformity of the meniscus surface retardation be-
comes stronger, and a separation of the surface on a

mobile and an immobile part with a sharp transition
between them is possible. Near the transition point, the
velocity profiles change sharply, and the viscous stresses
strongly increase in this region. A very similar separation
of the surface on a mobile and an immobile part is
observed also at the surface of rising bubbles or rising/
falling drops in surfactant solutions and in other sur-
factants containing systems with similar flow conditions.

The surface tension gradients, which are a consequence
of the tangential viscous stresses acting at the surfactant

covered surface, start to form and retard the part of the
surface further away from the transition point. The
numerical calculations of the flow profiles allow to
obtain a logarithmic decrement for the surface tension
variation with increasing distance from the contact line.
This decrement is close to that calculated by using the
Moffatt solution [77], except a small region near the
transition point, where the surface tension has a rather
small initial decrease. With this decrement, the surface
tension difference required to immobilize the surface
can be calculated. If the equilibrium surface pressure for

the considered surfactant solution exceeds, this
required surface tension difference, then the solution
surface should be completely immobilized by the
Marangoni stresses. However, if the surfactant concen-
tration in the solution is small, the Marangoni stresses
can be insufficient to counteract the tangential viscous
stresses at the surface. In this case, a mobile part can
appear at the surface, where the adsorbed surfactant
molecules are swept toward the retarded part of the
surface. The size of this mobile part is determined by
the dimensionless Marangoni number and the surface
pressure. The mobile part becomes broader, when the

flow velocity or the solution viscosity increases or the
equilibrium surface pressure decreases.

The balance at the surface is determined by the rate of
convective transfer, diffusion, and adsorption rate of the
solution components. In the dimensionless form, the
surfactant balance is expressed through the bulk and
surface Péclet numbers and the adsorption activity co-
efficient. The analysis shows that the size of the tran-
sition zone between the mobile and immobile parts of
the surface is determined by surface diffusion, whereas

the difference in surface mobility between these two
parts is determined by the solubility of the solution
components. For less soluble surfactants, the difference
in surface mobility should be much more significant
than for more soluble. The kinetic adsorption barrier
Current Opinion in Colloid & Interface Science 2023, 67:101723
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should be in favor of a more significant difference, while
the surfactant desorption from the substrate surface
should reduce the difference.

The obtained results show that the flow profiles near the
contact line can be modified due to surfactants presence.
The meniscus surface can be immobilized, fully or
partially, and up to different distances from the contact

line, depending on the particular conditions. For
different flow profiles the hydrodynamic energy dissi-
pation within the dynamic meniscus should be different.
This should lead to a dependence of the dynamic contact
angle on the surfactant concentration. In particular, be-
sides the apparent contact angle for zero velocity, the
friction parameter in the hydrodynamic theory can be
influenced by the surfactants [66]. However, the most
significant part of energy dissipates on small distances
from the contact line, where the considered here model
cannot be applied. Therefore, a more general model is

necessary to analyze quantitatively the effect of surfac-
tants on the dynamic contact angle.
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