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Basics of electrokinetic phenomena in nanopores 
Using the approach outlined in (Apel et al. 2021) and neglecting for simplicity salt-concentration 
gradients, from the transport equations derived in (Apel et al. 2021), we obtain this 
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where 𝐽𝐽𝑣𝑣 is the volume flux, 𝑝𝑝 is the hydrostatic pressure, 𝜑𝜑 is the electrostatic potential, 𝜒𝜒 is the 
hydraulic permeability at zero voltage gradient, 

𝜌𝜌𝑒𝑒𝑒𝑒 ≡ 𝐹𝐹(𝑍𝑍1𝜈𝜈1) ∙ 𝑐𝑐 ∙ (𝜏𝜏1 − 𝜏𝜏2)         (S3) 

is the electrokinetic charge density (the proportionality coefficient between electric-current 
density and volume flux under streaming-current conditions, i.e. ∇𝑐𝑐 = 0,∇𝜑𝜑 = 0) 
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is the electric conductivity at zero transmembrane volume flow, 𝐼𝐼 is the electric-current density 
defined this way 

𝐼𝐼 ≡ 𝑍𝑍1𝐽𝐽1 + 𝑍𝑍2𝐽𝐽2          (S5) 

Within the scope of model of straight capillaries, the coefficients featuring in Eqs(S1-S4) can be 
expressed this way 
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〈𝐹𝐹[1]〉            (S8) 



where 𝐷𝐷𝑖𝑖 are the ion diffusion coefficients, Γ𝑖𝑖  are the ion partitioning coefficients, 𝑐𝑐 is the virtual 
electrolyte concentration, 𝑐𝑐𝑖𝑖 ≡ 𝜈𝜈𝑖𝑖𝑐𝑐, 𝜈𝜈𝑖𝑖 are ion stoichiometric coefficients (they satisfy 
electroneutrality condition, 𝑍𝑍1𝜈𝜈1 + 𝑍𝑍2𝜈𝜈2 = 0), the brackets 〈 〉 mean averaging over the pore 
cross section, 𝐹𝐹�[ ] is a linear functional operator giving a solution to this equation 

𝜂𝜂𝛻𝛻2�⃗�𝑣 = −𝑓𝑓           (S9) 

where 𝑓𝑓 is an arbitrary function of coordinate inside the pore. The form of operator 𝐹𝐹�[ ] 
depends on the pore geometry. For example, in long straight cylindrical pores of equal size, all the 
flows are 1D, besides, the ion partitioning coefficients, 𝛤𝛤𝑖𝑖, depend only on the radial coordinate 
inside the pore. The operator can be shown to have this form (Yaroshchuk and Bondarenko 2018) 
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where 𝜂𝜂 is the solution viscosity, 𝑟𝑟𝑝𝑝 is the pore radius, 𝜌𝜌 is the dimensionless radial coordinated 
scaled on the pore radius. The hydraulic permeability at zero voltage gradient in this case is equal 
to 

𝜒𝜒 ≡ 〈𝐹𝐹[1]〉 = 𝑟𝑟𝑝𝑝2

8𝜂𝜂
          (S11) 

The ion transmission coefficients, 𝜏𝜏𝑖𝑖, defined by Eq(S8) quantify the extent to which ions are 
convectively entrained by the volume flow. Notably, these coefficients are larger than one for 
counterions whose partitioning coefficients exceed unity. In principle, these coefficients can be 
affected by steric hindrance(Yaroshchuk et al. 2019) but this is not significant in nanopores whose 
size is much larger than the ion size (the focus of this study). Based on the same considerations, 
we also neglect the effect of steric hindrance on the ion diffusion and consider ion diffusion 
coefficients in nanopores constant and equal to those in bulk electrolyte solution. 

Popular space-charge model postulates ion partitioning due to electrostatic interactions with fixed 
charges on the nanopore walls and local thermodynamic equilibrium (Yaroshchuk 2011). 
Accordingly, ion-partitioning coefficients can be obtained from the condition of constant 
electrochemical potential for each ion across the nanopore cross-section (Boltzmann distribution) 

Γ𝑖𝑖 =  𝑒𝑒𝑒𝑒𝑝𝑝(−𝑍𝑍𝑖𝑖𝜓𝜓)          (S12) 

In combination with Poisson equation, this gives rise to Poisson-Boltzmann (PB) equation for the 
quasi-equilibrium dimensionless electrostatic potential, 𝜓𝜓 
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where 𝜅𝜅 is the reciprocal Debye screening length defined as 
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is the ionic strength in the virtual solution. For the cylindrical pore geometry, the boundary 
conditions are zero potential derivative at the pore axis (from the symmetry) and a given electric-
charge density (potential derivative) at the capillary wall. 
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where 𝜎𝜎 is the surface-charge density. One can also consider the so-called charge-regulation 
boundary condition (Israelachvili 2011). PB equation has several approximate solutions but they 
have limited applicability. Therefore, PB equation will be solved numerically. The integrations 
featuring in Eqs(S6-S8) will be performed numerically, too. See the ESI of (Yaroshchuk and 
Bondarenko 2018) for more detail on the procedures. 

Nanopore conductivity (straight cylindrical nanopores, (1:1) electrolytes) 
It has been shown that the second term in the right-hand side of Eq(S6) as well as the whole 
“mutual electro-diffusion” term given be Eq(S7) are very small in nanopores with well overlapped 
diffuse parts of electric double layers and are limited from above by 10-20% in broader nanopores 
(Yaroshchuk 1995). Therefore, for approximate estimates these terms can be neglected. 
Substituting the corresponding simplified version of Eq(S6) to Eq(S4), assuming constant diffusion 
coefficients, (1:1) electrolyte, performing cross-section averaging for cylindrical pore geometry, 
and using Eq(S12) for the ion-partitioning coefficients, we obtain 
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Estimates of streaming potential and EK-conversion efficiency for nanoporous films 
with pore size and surface charge mimicking polymer track-etched membranes 
The surface-charge density in nanopores (24 nm diameter) of poly-ethylene-terephtalate track-
etched membranes has recently been determined from simultaneous measurements of osmotic 
pressure and salt diffusion in KCl and LiCl solutions (Apel et al. 2021). For the surface-charge 
densities fitted to experimental data in this study (and identical cylindrical pores of 24-nm 
diameter), one calculate numerically (using the procedures described in (Yaroshchuk and 
Bondarenko 2018)) the electrokinetic-charge density, electric conductivity and hydraulic 
permeability at zero current (inverse of coefficient by volume flux in Eq(S1)) as well as streaming 
potential at maximum capillary pressure at complete wetting (ca.1.2 MPa) and EK-conversion 
efficiency for the side-evaporation configuration. The results are listed in Table S1. The 
calculations assumed the real porosity of track-etched membranes (ca.3.6%) but from the 
definitions of streaming-potential coefficient (Eq(43)) and EK-conversion efficiency (Eq(9)) one can 
see that these properties are independent of porosity because electrokinetic-charge density is 
independent of porosity (see Eq(S3)) while both hydraulic permeability and electric conductivity in 
the definition of EK-conversion efficiency are directly proportional to it. 

Table S1. Streaming potential and EK-conversion efficiency in nanoporous materials mimicking 
electro-surface properties of track-etched membranes studied in (Apel et al. 2021) 

Salt/ 
concentration 

surface-
charge 

electrokinetic-
charge 

electric 
conductivity 

(𝑚𝑚𝑚𝑚 𝑚𝑚⁄ ) 

hydraulic 
permeability 

(𝑙𝑙𝑚𝑚 (𝑠𝑠 ∙ 𝑀𝑀𝑃𝑃𝑀𝑀)⁄ ) 

streaming 
potential  

(V) 

electrokinetic-
conversion 



density 
(𝑚𝑚𝑚𝑚 ∙ 𝑠𝑠 𝑚𝑚2⁄ ) 

density 
(𝑚𝑚 ∙ 𝑠𝑠 𝑑𝑑𝑚𝑚3⁄ ) 

efficiency 
(16𝛩𝛩 27⁄ ) (-) 

KCl, 1.5 mM -5.7 -73 2.8 0.64 -1.9 0.018 
KCl, 3 mM -9.5 -107 4.9 0.62 -1.6 0.022 
LiCl, 1.5 mM -5.6 -72 1.4 0.58 -3.4 0.031 
LiCl, 3 mM -9.3 -106 2.5 0.55 -2.7 0.036 

Remarkably, while the streaming potential decreases with electrolyte concentration, the EK-
conversion efficiency even somewhat increases. This is due to the considerable increase of 
surface-charge (and electrokinetic-charge) density with the electrolyte concentration. 

Electrokinetics with electron-conducting substrates 
In this section, we make an attempt of taking into account electron/hole conductance of matrix of 
nanoporous materials experiencing electrokinetic phenomena (streaming potential). We consider 
the simplest limiting case of sufficiently large pores without any appreciable overlap of diffuse 
parts of electric double layers. 

Pressure-driven mode 
In this section, we consider long straight channels with a pressure-drive flow. According to 
Eqs(4,7), 
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In sufficiently broad channels, the average electrostatic potential, 𝜓𝜓�, is very small and can be 
neglected. Therefore, from Eq(S18), we obtain 

𝑑𝑑𝜑𝜑 = 𝜀𝜀𝜀𝜀0𝜁𝜁
𝜂𝜂𝑔𝑔

𝑑𝑑𝑃𝑃           (S19) 

Here, 𝜑𝜑 is the electrostatic potential in the central part of the channel far away from its surfaces. 
Besides it, close to the surfaces there is a potential drop within diffuse part of electric double layer 
(zeta-potential). With electron-conducting substrates, the electrostatic potential of conductor 
surface must be the same all the way along the channel. In particular, this surface potential occurs 
at zero volume flow due to preferential adsorption of ions of one sign on the surface (or 
dissociation of ionogenic groups). Let us denote this constant surface potential 𝜁𝜁0, so 

𝜁𝜁 + 𝜑𝜑 = 𝜁𝜁0           (S20) 

By substituting Eq(S20) to Eq(S19), we obtain 
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where we have denoted 

𝛼𝛼 ≡ 𝜀𝜀𝜀𝜀0
𝜂𝜂𝑔𝑔
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In this simple analysis, we neglect the influence of electrokinetic phenomena on the volume flow 
(this is justified just in sufficiently broad channels). Therefore, the hydrostatic pressure is 



independent of electrostatic potential and its profile is linear. Accordingly, Eq(S21) can be easily 
integrated along the channel to yield 

𝛼𝛼∆𝑃𝑃 = 𝑙𝑙𝑙𝑙 �𝜁𝜁0−𝑑𝑑(𝐿𝐿)
𝜁𝜁0−𝑑𝑑(0)�          (S23) 

where 𝐿𝐿 is the channel length, 

∆𝑃𝑃 ≡ 𝑃𝑃(0) − 𝑃𝑃(𝐿𝐿)          (S24) 

is the hydrostatic-pressure difference along the channel. From Eqs(S23, S24) we obtain 

∆𝜑𝜑 ≡ 𝜑𝜑(0) − 𝜑𝜑(𝐿𝐿) = �𝜁𝜁0 − 𝜑𝜑(0)�(𝑒𝑒𝑒𝑒𝑝𝑝(𝛼𝛼∆𝑃𝑃) − 1)      (S25) 

The hydrostatic-pressure profile is linear 
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Taking this into account, from Eq(S21), we obtain 
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One can see that, in contrast to the classical case of dielectric substrates, the electrostatic-
potential profile is non-linear. The extent of non-linearity is controlled by the value of parameter 
𝛼𝛼∆𝑃𝑃. Notably, when this parameter is small, we recover the same linear potential profile as in the 
classical case. 

Physically, the constancy of surface electrostatic potential is ensured due to the appearance of 
polarization electron charges at the channel surfaces. Together with the initially present fixed 
charges (arising due to preferential ion adsorption or dissociation of ionogenic groups) they give 
rise to a position-dependent zeta-potential that can be found from the condition of constancy of 
surface electrostatic potential (Eq(S20)) and distribution of electrostatic potential outside the EDLs 
(Eq(S27)) 

𝜁𝜁(𝜉𝜉) ≡ 𝜁𝜁0 − 𝜑𝜑(𝜉𝜉) ≡ �𝜁𝜁0 − 𝜑𝜑(0)�𝑒𝑒𝑒𝑒𝑝𝑝(𝛼𝛼∆𝑃𝑃𝜉𝜉)       (S28) 

where 𝜉𝜉 ≡ 𝑒𝑒 𝐿𝐿⁄  is the dimensionless coordinate scaled on the cannel length.  We consider the 
conductor ungrounded. Therefore, the total induced electron charge is zero. There is this well-
known relationship between surface-charge density and equilibrium electrostatic potential at a 
charged surface (Gouy-Chapman formula) 
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The surface-charge density is proportional to the hyperbolic sinus of zeta-potential. Taking into 
account this and the fact that the total surface charge under flow conditions must be equal to the 
charge at no flow, we obtain 
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Substituting Eq(S28) for the distribution of zeta-potential, we obtain 
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The integral in the right-hand side of Eq(S31) can be taken in terms of special functions 
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where 𝑚𝑚ℎ𝑠𝑠 is the integral hyperbolic sinus, and we have denoted 

𝑚𝑚 ≡ 𝛼𝛼∆𝑃𝑃           (S33) 

Eq(S32) is a transcendental equation for the determination of “entrance” electrostatic potential, 
𝜑𝜑(0), as a function of parameter 𝑚𝑚, which is proportional to the hydrostatic-pressure drop along 
the channel. Given that integral hyperbolic sinus is a strongly increasing function of its argument, 
Eq(S32) shows that when parameter 𝑚𝑚 increases, 𝜁𝜁0 − 𝜑𝜑(0) → 0. Physically, this means that the 
polarization charge distributes itself in such a way that the net charge density (fixed plus induced 
charge) at the channel “entrance” tends to zero whereas it “peaks” exponentially ever stronger 
(with increasing pressure difference) close to the “exit” (see Eq(S28)). Fig.S1 shows that for 
conducting substrates the dependence of streaming potential on applied pressure is essentially 
sublinear. This can be a problem in view of achieving sufficiently high streaming potentials in 
energy harvesting from evaporation. 

 

Fig.S1.Dimensionless OCV (streaming potential) as a function of dimensionless hydrostatic-
pressure difference (parameter 𝑚𝑚 defined by Eq(S33)); the values of “equilibrium” dimensionless 
zeta-potential (𝜁𝜁0) are indicated in the legend. 

Evaporation-driven mode 
We consider the system with side evaporation schematically shown in Fig.7. In this case, Eq(S18) is 
still applicable but the hydrostatic-pressure gradient is not constant but is given by Eq(30). 
Therefore, by assuming 𝜓𝜓� = 0 and using Eq(S20), we obtain 
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This can be easily integrated to yield 
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where 𝜉𝜉 ≡ 𝑒𝑒 𝐿𝐿⁄  is the dimensionless coordinate along the porous film, 
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The local zeta-potential, 𝜁𝜁(𝜉𝜉) ≡ 𝜁𝜁0 − 𝜑𝜑(𝜉𝜉), is 
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Taking into account as previously that the total induced electric charge should be zero and using 
Eq(S29), we obtain. 
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From this transcendental equation, one can find 𝜑𝜑(0) as a function of 𝛽𝛽. From Eq(S36) we obtain 
this expression for the coordinate dependence of derivative of electrostatic potential 

𝑑𝑑𝑑𝑑
𝑑𝑑𝜉𝜉
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Fig.S2 shows an example of distribution of electrostatic-potential derivative. 

 

Fig.S2. Distribution of derivative of dimensionless OCV (streaming potential) with respect to 
dimensionless coordinate along porous film calculated using Eq(S40): 𝜁𝜁0 = −3, 𝛽𝛽 = 40 

This distribution is in qualitative agreement with experimental data obtained in (Xue et al. 2017) 
for nanoporous films made from carbon-black nanoparticles. 
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